In the present work, a kilo-joule plasma focus device, PF-2kJ, is used as a pulsed neutron generator. Time of flight and neutron spectroscopic measurements suggest neutron energies larger than 5 MeV in the radial and axial directions. The anisotropy in neutron emission suggested a beam-target nuclear fusion mechanism. A simulation tool kit Geant4 is used to interpret and verify the experimentally observed spectroscopic results of neutrons' energies. Based on the findings, it is hypothesized that the pinch and pre-pinch phases invoke suitable conditions for the D–D reaction that produces proton and tritium. The produced tritium nuclei further collide with deuterons in the pinch and post-pinch phases and produce high-energy neutrons. However, the observed high-energy neutrons could be of mixed origin of beam-target nuclear fusion mechanism and D–T fusion reactions.

1.
R.
Niranjan
,
R.
Srivastava
,
J.
Joycee
, and
K. D.
Joshi
, “
High yield (⩾108/pulse) DD neutron generator based on a compact, transportable and low energy plasma focus device
,”
Plasma Phys. Controlled Fusion
63
(
7
),
075006
(
2021
).
2.
J.
Jain
,
J.
Moreno
,
S.
Davis
,
B.
Bora
,
C.
Pavez
,
G.
Avaria
, and
L.
Soto
, “
Experimental measurements of high-energy photons in x-rays pulses emitted from a hundred joules plasma focus device and its interpretations
,”
Results Phys.
16
,
102915
(
2020
).
3.
M.
Barbaglia
,
R.
Giovachini
,
M. M.
Milanese
, and
A.
Clausse
, “
A study of the effects of the cathode configuration on the plasma kinetics and neutron emission of plasma-focus discharges in deuterium
,”
Plasma Phys. Controlled Fusion
62
(
5
),
055002
(
2020
).
4.
S.
Auluck
,
P.
Kubes
,
M.
Paduch
,
M. J.
Sadowski
,
V. I.
Krauz
,
S.
Lee
,
L.
Soto
,
M.
Scholz
,
R.
Miklaszewski
,
H.
Schmidt
,
A.
Blagoev
,
M.
Samuelli
,
Y. S.
Seng
,
S. V.
Springham
,
A.
Talebitaher
,
C.
Pavez
,
M.
Akel
,
S. L.
Yap
,
R.
Verma
,
K.
Kolacek
,
P. L. C.
Keat
,
R. S.
Rawat
,
A.
Abdou
,
G.
Zhang
, and
T.
Laas
, “
Update on the scientific status of the plasma focus
,”
Plasma
4
(
3
),
450
669
(
2021
).
5.
G.
Avaria
,
J.
Ardila-Rey
,
S.
Davis
,
L.
Orellana
,
B.
Cevallos
,
C.
Pavez
, and
L.
Soto
, “
Hard x-ray emission detection using deep learning analysis of the radiated UHF electromagnetic signal from a plasma focus discharge
,”
IEEE Access
7
,
74899
74908
(
2019
).
6.
J.
Jain
,
J.
Moreno
,
S.
Davis
,
B.
Bora
,
C.
Pavez
,
G.
Avaria
, and
L.
Soto
, “
Experimental evidence of more than one ions acceleration mechanisms in plasma focus device: Observations and interpretations
,”
Phys. Plasmas
26
(
10
),
103105
(
2019
).
7.
E. N.
Hahn
,
S.
Ghosh
,
V.
Eudave
,
J.
Narkis
,
J. R.
Angus
,
A. J.
Link
,
F.
Conti
, and
F. N.
Beg
, “
Effect of insulator length and fill pressure on filamentation and neutron production in a 4.6 kJ dense plasma focus
,”
Phys. Plasmas
29
(
8
),
083508
(
2022
).
8.
L.
Soto
, “
New trends and future perspectives on plasma focus research
,”
Plasma Phys. Controlled Fusion
47
(
5A
),
A361
(
2005
).
9.
L.
Soto
,
P.
Silva
,
J.
Moreno
,
M.
Zambra
,
W.
Kies
,
R. E.
Mayer
,
A.
Clausse
,
L.
Altamirano
,
C.
Pavez
, and
L.
Huerta
, “
Demonstration of neutron production in a table-top pinch plasma focus device operating at only tens of joules
,”
J. Phys. D
41
(
20
),
205215
(
2008
).
10.
L.
Soto
,
C.
Pavéz
,
J.
Moreno
,
L.
Altamirano
,
L.
Huerta
,
M.
Barbaglia
,
A.
Clausse
, and
R. E.
Mayer
, “
Evidence of nuclear fusion neutrons in an extremely small plasma focus device operating at 0.1 Joules
,”
Phys. Plasmas
24
(
8
),
082703
(
2017
).
11.
J.
Moreno
,
F.
Veloso
,
C.
Pavez
,
A.
Tarifeño-Saldivia
,
D.
Klir
, and
L.
Soto
, “
Neutron energy distribution and temporal correlations with hard x-ray emission from a hundreds of joules plasma focus device
,”
Plasma Phys. Controlled Fusion
57
(
3
),
035008
(
2015
).
12.
R.
Verma
,
R. S.
Rawat
,
P.
Lee
,
M.
Krishnan
,
S. V.
Springham
, and
T. L.
Tan
, “
Experimental study of neutron emission characteristics in a compact sub-kilojoule range miniature plasma focus device
,”
Plasma Phys. Controlled Fusion
51
(
7
),
075008
(
2009
).
13.
S. V.
Springham
,
R.
Verma
,
M. S. N.
Zaw
,
R. S.
Rawat
,
P.
Lee
,
A.
Talebitaher
, and
J. H.
Ang
, “
Plasma focus neutron energy and anisotropy measurements using zirconium–beryllium pair activation detectors
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
988
,
164830
(
2021
).
14.
J. H.
Lee
,
L. P.
Shomo
,
M. D.
Williams
, and
H.
Hermansdorfer
, “
Neutron production mechanism in a plasma focus
,”
Phys. Fluids
14
(
10
),
2217
2223
(
1971
).
15.
V. E.
Ablesimov
,
Y. N.
Dolin
,
O. V.
Pashko
, and
Z. S.
Tsibikov
, “
Correlation of the neutron yield anisotropy with the electrical characteristics of a plasma focus discharge
,”
Plasma Phys. Rep.
36
(
5
),
403
(
2010
).
16.
M. J.
Bernstein
and
G. G.
Comisar
, “
Neutron energy and flux distributions from a crossed‐field acceleration model of plasma focus and Z‐pinch discharges
,”
Phys. Fluids
15
(
4
),
700
707
(
1972
).
17.
A.
Bernard
,
H.
Bruzzone
,
P.
Choi
,
H.
Chuaqui
,
V.
Gribkov
,
J.
Herrera
,
K.
Hirano
, and
V.
Zoita
, “
Scientific status of plasma focus research
,”
J. Moscow Phys. Soc.
8
,
93
170
(
1998
).
18.
M. J.
Bernstein
, “
Acceleration mechanism for neutron production in plasma focus and Z‐pinch discharges
,”
Phys. Fluids
13
(
11
),
2858
2866
(
1970
).
19.
M. G.
Haines
, “
A review of the dense Z-pinch
,”
Plasma Phys. Controlled Fusion
53
(
9
),
093001
(
2011
).
20.
U.
Jäger
and
H.
Herold
, “
Fast ion kinetics and fusion reaction mechanism in the plasma focus
,”
Nucl. Fusion
27
(
3
),
407
(
1987
).
21.
J.
Jain
,
J.
Moreno
,
D.
Morales
,
S.
Davis
,
B.
Bora
,
G.
Avaria
,
M. J.
Inestrosa-Izurieta
, and
L.
Soto
, “
Observation and interpretation of neutron origin prior to hard X rays and pinch in a hundred joules plasma focus device
,”
Laser Part. Beams
35
(
4
),
656
662
(
2017
).
22.
D.
Klir
,
P.
Kubes
,
M.
Paduch
,
T.
Pisarczyk
,
T.
Chodukowski
,
M.
Scholz
,
Z.
Kalinowska
,
E.
Zielinska
,
B.
Bienkowska
,
J.
Hitschfel
,
S.
Jednorog
,
L.
Karpinski
,
J.
Kortanek
,
J.
Kravarik
,
K.
Rezac
,
I.
Ivanova-Stanik
, and
K.
Tomaszewski
, “
Experimental evidence of thermonuclear neutrons in a modified plasma focus
,”
Appl. Phys. Lett.
98
(
7
),
071501
(
2011
).
23.
D.
Klir
,
P.
Kubes
,
M.
Paduch
,
T.
Pisarczyk
,
T.
Chodukowski
,
M.
Scholz
,
Z.
Kalinowska
,
B.
Bienkowska
,
L.
Karpinski
,
J.
Kortanek
,
J.
Kravarik
,
K.
Rezac
,
I.
Ivanova-Stanik
,
K.
Tomaszewski
, and
E.
Zielinska
, “
Search for thermonuclear neutrons in a mega-ampere plasma focus
,”
Plasma Phys. Controlled Fusion
54
(
1
),
015001
(
2011
).
24.
J.
Allison
,
K.
Amako
,
J.
Apostolakis
,
P.
Arce
,
M.
Asai
,
T.
Aso
,
E.
Bagli
,
A.
Bagulya
,
S.
Banerjee
,
G.
Barrand
,
B. R.
Beck
,
A. G.
Bogdanov
,
D.
Brandt
,
J. M. C.
Brown
,
H.
Burkhardt
,
P.
Canal
,
D.
Cano-Ott
,
S.
Chauvie
,
K.
Cho
,
G. A. P.
Cirrone
,
G.
Cooperman
,
M. A.
Cortés-Giraldo
,
G.
Cosmo
,
G.
Cuttone
,
G.
Depaola
,
L.
Desorgher
,
X.
Dong
,
A.
Dotti
,
V. D.
Elvira
,
G.
Folger
,
Z.
Francis
,
A.
Galoyan
,
L.
Garnier
,
M.
Gayer
,
K. L.
Genser
,
V. M.
Grichine
,
S.
Guatelli
,
P.
Guèye
,
P.
Gumplinger
,
A. S.
Howard
,
I.
Hřivnáčová
,
S.
Hwang
,
S.
Incerti
,
A.
Ivanchenko
,
V. N.
Ivanchenko
,
F. W.
Jones
,
S. Y.
Jun
,
P.
Kaitaniemi
,
N.
Karakatsanis
,
M.
Karamitros
,
M.
Kelsey
,
A.
Kimura
,
T.
Koi
,
H.
Kurashige
,
A.
Lechner
,
S. B.
Lee
,
F.
Longo
,
M.
Maire
,
D.
Mancusi
,
A.
Mantero
,
E.
Mendoza
,
B.
Morgan
,
K.
Murakami
,
T.
Nikitina
,
L.
Pandola
,
P.
Paprocki
,
J.
Perl
,
I.
Petrović
,
M. G.
Pia
,
W.
Pokorski
,
J. M.
Quesada
,
M.
Raine
,
M. A.
Reis
,
A.
Ribon
,
A.
Ristić Fira
,
F.
Romano
,
G.
Russo
,
G.
Santin
,
T.
Sasaki
,
D.
Sawkey
,
J. I.
Shin
,
I. I.
Strakovsky
,
A.
Taborda
,
S.
Tanaka
,
B.
Tomé
,
T.
Toshito
,
H. N.
Tran
,
P. R.
Truscott
,
L.
Urban
,
V.
Uzhinsky
,
J. M.
Verbeke
,
M.
Verderi
,
B. L.
Wendt
,
H.
Wenzel
,
D. H.
Wright
,
D. M.
Wright
,
T.
Yamashita
,
J.
Yarba
, and
H.
Yoshida
, “
Recent developments in Geant4
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
835
,
186
225
(
2016
).
25.
J.
Allison
,
K.
Amako
,
J. E. A.
Apostolakis
,
H. A. A. H.
Araujo
,
P. A.
Dubois
,
M. A. A. M.
Asai
,
G.
Barrand
,
R.
Capra
,
S.
Chauvie
,
R.
Chytrac
, and
H. A. Y. H.
Yoshida
, “
Geant4 developments and applications
,”
IEEE Trans. Nucl. Sci.
53
(
1
),
270
278
(
2006
).
26.
S.
Agostinelli
,
J.
Allison
,
K. A.
Amako
,
J.
Apostolakis
,
H.
Araujo
,
P.
Arce
, and
Geant4 Collaboration
, “
GEANT4—A simulation toolkit
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
506
(
3
),
250
303
(
2003
).
27.
B.
Appelbe
and
J.
Chittenden
, “
The production spectrum in fusion plasmas
,”
Plasma Phys. Controlled Fusion
53
(
4
),
045002
(
2011
).
28.
P. R.
Goncharov
, “
Spectra of neutrons from a beam-driven fusion source
,”
Nucl. Fusion
55
(
6
),
063012
(
2015
).
29.
J.
Kesner
,
D. T.
Garnier
,
A.
Hansen
,
M.
Mauel
, and
L.
Bromberg
, “
Helium catalysed D–D fusion in a levitated dipole
,”
Nucl. Fusion
44
(
1
),
193
(
2003
).
30.
L.
Soto
,
C.
Pavez
,
A.
Tarifeno
,
J.
Moreno
, and
F.
Veloso
, “
Studies on scalability and scaling laws for the plasma focus: Similarities and differences in devices from 1 MJ to 0.1 J
,”
Plasma Sources Sci. Technol.
19
(
5
),
055017
(
2010
).
31.
S.
Lee
and
A.
Serban
, “
Dimensions and lifetime of the plasma focus pinch
,”
IEEE Trans. Plasma Sci.
24
(
3
),
1101
1105
(
1996
).
32.
A. S.
Richardson
,
2019 NRL Plasma Formulary
(
Naval Research Laboratory
,
Washington, DC
,
2019
), p.
30
.
33.
Z.
Jian-Fu
,
R.
Xi-Chao
,
H.
Long
,
L.
Xia
,
B.
Jie
,
Z.
Guo-Guang
,
H.
Han-Xiong
, and
S.
Chao-Hong
, “
Measurements of the light output functions of plastic scintillator using 9Be(d, n)10B reaction neutron source
,”
Chin. Phys. C
34
(
7
),
988
(
2010
).
34.
Geant4 Collaboration
, see https://geant4.web.cern.ch/docs/ for “
Book for application developers, Release 11.1
.”

Supplementary Material

You do not currently have access to this content.