Nonlinear resistive-magnetohydrodynamics (MHD) computation with heating and anisotropic transport is applied to examine the interaction between thermal energy and magnetic fluctuations in inductively driven reversed-field pinches (RFPs). The magnetic fluctuations underlie magnetic field reversal through dynamo-like correlations, and they enhance thermal energy transport through fluctuations of parallel heat flux density. With the unfavorable magnetic curvature that exists across the RFP profile, thermal energy also affects the magnetic fluctuations. Computations with the NIMROD code [Sovinec et al., J. Comput. Phys. 195, 355–386 (2004)] integrate nonlinear MHD dynamics with energy transport and reproduce an RFP state with experimentally relevant values of plasma-β. Equilibria constructed from results of the 3D computations are analyzed to assess the sources of free energy in the saturated nonlinear state. Linear computations for these profiles show unstable modes of tearing parity. Their eigenfunctions are used to evaluate and compare stabilizing and destabilizing contributions to the kinetic energy integral. An assessment of the drives in the integral reveals that the pressure gradient drive is of comparable magnitude to the parallel current drive, and only the sum of the two surpasses the stabilizing contributions. Correlation of magnetic and parallel heat flux density fluctuations in the nonlinear computations shows that fluctuation-induced thermal conduction is the dominant mode of energy loss, as expected from experimental evidence. Decomposition of the fluctuating heat flux density shows that second-order correlations, alone, do not explain the total energy transport. Higher-order correlations are also important.

1.
J. B.
Taylor
, “
Relaxation of toroidal plasma and generation of reverse magnetic fields
,”
Phys. Rev. Lett.
33
(
19
),
1139
1141
(
1974
).
2.
S. C.
Prager
, “
Transport and fluctuations in reversed field pinches
,”
Plasma Phys. Controlled Fusion
32
(
11
),
903
916
(
1990
).
3.
H. A. B.
Bodin
and
A. A.
Newton
, “
Reversed-field-pinch research
,”
Nucl. Fusion
20
(
10
),
1255
1324
(
1980
).
4.
L.
Marrelli
,
P.
Martin
,
M. E.
Puiatti
,
J. S.
Sarff
,
B. E.
Chapman
,
J. R.
Drake
,
D. F.
Escande
, and
S.
Masamune
, “
The reversed field pinch
,”
Nucl. Fusion
61
(
2
),
023001
(
2021
).
5.
A. Y.
Aydemir
and
D. C.
Barnes
, “
Sustained self-reversal in the reversed-field pinch
,”
Phys. Rev. Lett.
52
(
11
),
930
933
(
1984
).
6.
D. D.
Schnack
,
E. J.
Caramana
, and
R. A.
Nebel
, “
Three-dimensional magnetohydrodynamic studies of the reversed-field pinch
,”
Phys. Fluids
28
(
1
),
321
333
(
1985
).
7.
J. A.
Holmes
,
B. A.
Carreras
,
P. H.
Diamond
, and
V. E.
Lynch
, “
Nonlinear dynamics of tearing modes in the reversed field pinch
,”
Phys. Fluids
31
(
5
),
1166
1179
(
1988
).
8.
Y. L.
Ho
, “
Numerical simulation of fluctuation suppression via DC helicity injection in a reversed field pinch
,”
Nucl. Fusion
31
(
2
),
341
350
(
1991
).
9.
S.
Cappello
and
D.
Biskamp
, “
Reconnection processes and scaling laws in reversed field pinch magnetohydrodynamics
,”
Nucl. Fusion
36
(
5
),
571
581
(
1996
).
10.
K.
Kusano
and
T.
Sato
, “
Non-linear coupling effects on the relaxation process in the reversed field pinch
,”
Nucl. Fusion
27
(
5
),
821
832
(
1987
).
11.
J. R.
King
,
C. R.
Sovinec
, and
V. V.
Mirnov
, “
First-order finite-Larmor-radius fluid modeling of tearing and relaxation in a plasma pinch
,”
Phys. Plasmas
19
(
5
),
055905
(
2012
).
12.
J. P.
Sauppe
and
C. R.
Sovinec
, “
Extended MHD modeling of tearing-driven magnetic relaxation
,”
Phys. Plasmas
24
(
5
),
056107
(
2017
).
13.
J. S.
Sarff
,
S.
Assadi
,
A. F.
Almagri
,
M.
Cekic
,
D. J.
Den Hartog
,
G.
Fiksel
,
S. A.
Hokin
,
H.
Ji
,
S. C.
Prager
,
W.
Shen
,
K. L.
Sidikman
, and
M. R.
Stoneking
, “
Nonlinear coupling of tearing fluctuations in the Madison Symmetric Torus
,”
Phys. Fluids B
5
(
7
),
2540
2545
(
1993
).
14.
H.
Ji
,
S. C.
Prager
, and
J. S.
Sarff
, “
Conservation of magnetic helicity during plasma relaxation
,”
Phys. Rev. Lett.
74
(
15
),
2945
2948
(
1995
).
15.
D. J.
Den Hartog
,
J. T.
Chapman
,
D.
Craig
,
G.
Fiksel
,
P. W.
Fontana
,
S. C.
Prager
, and
J. S.
Sarff
, “
Measurement of core velocity fluctuations and the dynamo in a reversed-field pinch
,”
Phys. Plasmas
6
(
5
),
1813
1821
(
1999
).
16.
W. X.
Ding
,
D. L.
Brower
,
D.
Craig
,
B. H.
Deng
,
G.
Fiksel
,
V.
Mirnov
,
S. C.
Prager
,
J. S.
Sarff
, and
V.
Svidzinski
, “
Measurement of the Hall dynamo effect during magnetic reconnection in a high-temperature plasma
,”
Phys. Rev. Lett.
93
(
4
),
045002
(
2004
).
17.
A.
Kuritsyn
,
G.
Fiksel
,
A. F.
Almagri
,
D. L.
Brower
,
W. X.
Ding
,
M. C.
Miller
,
V. V.
Mirnov
,
S. C.
Prager
, and
J. S.
Sarff
, “
Measurements of the momentum and current transport from tearing instability in the Madison Symmetric Torus reversed-field pinch
,”
Phys. Plasmas
16
(
5
),
055903
(
2009
).
18.
A. B.
Rechester
and
M. N.
Rosenbluth
, “
Electron heat transport in a tokamak with destroyed magnetic surfaces
,”
Phys. Rev. Lett.
40
(
1
),
38
41
(
1978
).
19.
G.
Fiksel
,
S. C.
Prager
,
W.
Shen
, and
M. R.
Stoneking
, “
Measurement of magnetic fluctuation induced energy transport
,”
Phys. Rev. Lett.
72
(
7
),
1028
1031
(
1994
).
20.
T. M.
Biewer
,
C. B.
Forest
,
J. K.
Anderson
,
G.
Fiksel
,
B.
Hudson
,
S. C.
Prager
,
J. S.
Sarff
,
J. C.
Wright
,
D. L.
Brower
,
W. X.
Ding
, and
S. D.
Terry
, “
Electron heat transport measured in a stochastic magnetic field
,”
Phys. Rev. Lett.
91
(
4
),
045004
(
2003
).
21.
J. S.
Sarff
,
A. F.
Almagri
,
J. K.
Anderson
,
M.
Borchardt
,
D.
Carmody
,
K.
Caspary
,
B. E.
Chapman
,
D. J.
Den Hartog
,
J.
Duff
,
S.
Eilerman
,
A.
Falkowski
,
C. B.
Forest
,
J. A.
Goetz
,
D. J.
Holly
,
J.-H.
Kim
,
J.
King
,
J.
Ko
,
J.
Koliner
,
S.
Kumar
,
J. D.
Lee
,
D.
Liu
,
R.
Magee
,
K. J.
McCollam
,
M.
McGarry
,
V. V.
Mirnov
,
M. D.
Nornberg
,
P. D.
Nonn
,
S. P.
Oliva
,
E.
Parke
,
J. A.
Reusch
,
J. P.
Sauppe
,
A.
Seltzman
,
C. R.
Sovinec
,
H.
Stephens
,
D.
Stone
,
D.
Theucks
,
M.
Thomas
,
J.
Triana
,
P. W.
Terry
,
J.
Waksman
,
W. F.
Bergerson
,
D. L.
Brower
,
W. X.
Ding
,
L.
Lin
,
D. R.
Demers
,
P.
Fimognari
,
J.
Titus
,
F.
Auriemma
,
S.
Cappello
,
P.
Franz
,
P.
Innocente
,
R.
Lorenzini
,
E.
Martines
,
B.
Momo
,
P.
Piovesan
,
M.
Puiatti
,
M.
Spolaore
,
D.
Terranova
,
P.
Zanca
,
V.
Belykh
,
V. I.
Davydenko
,
P.
Deichuli
,
A. A.
Ivanov
,
S.
Polosatkin
,
N. V.
Stupishin
,
D.
Spong
,
D.
Craig
,
R. W.
Harvey
,
M.
Cianciosa
, and
J. D.
Hanson
, “
Overview of results from the MST reversed field pinch experiment
,”
Nucl. Fusion
53
(
10
),
104017
(
2013
).
22.
D.
Bonfiglio
,
M.
Veranda
,
S.
Cappello
,
D. F.
Escande
, and
L.
Chacón
, “
Experimental-like helical self-organization in reversed-field pinch modeling
,”
Phys. Rev. Lett.
111
(
8
),
085002
(
2013
).
23.
D. C.
Robinson
, “
High-diffuse pinch configurations
,”
Plasma Phys.
13
(
6
),
439
462
(
1971
).
24.
H. P.
Furth
,
J.
Killeen
, and
M. N.
Rosenbluth
, “
Finite-resistivity instabilities of a sheet pinch
,”
Phys. Fluids
6
(
4
),
459
484
(
1963
).
25.
J. L.
Johnson
,
J. M.
Greene
, and
B.
Coppi
, “
Effect of resistivity on hydromagnetic instabilities in multipolar systems
,”
Phys. Fluids
6
(
8
),
1169
(
1963
).
26.
B.
Coppi
,
J. M.
Greene
, and
J. L.
Johnson
, “
Resistive instabilities in a diffuse linear pinch
,”
Nucl. Fusion
6
(
2
),
101
117
(
1966
).
27.
J. M.
Finn
and
W. M.
Manheimer
, “
Resistive interchange modes in reversed-field pinches
,”
Phys. Fluids
25
(
4
),
697
701
(
1982
).
28.
D.
Merlin
,
S.
Ortolani
,
R.
Paccagnella
, and
M.
Scapin
, “
Linear resistive magnetohydrodynamic stability analysis of reversed field pinch configurations at finite beta
,”
Nucl. Fusion
29
(
7
),
1153
1160
(
1989
).
29.
D. H.
Liu
, “
Effects of current and pressure profiles on resistive MHD modes in reversed field pinches
,”
Nucl. Fusion
37
(
8
),
1083
1093
(
1997
).
30.
F.
Ebrahimi
,
S. C.
Prager
, and
C. R.
Sovinec
, “
Resistive–ideal transition of pressure-driven instabilities in current-carrying plasmas beyond the Suydam criterion
,”
Phys. Plasmas
9
(
6
),
2470
2473
(
2002
).
31.
R.
Paccagnella
, “
Pressure driven tearing and interchange modes in the reversed field pinch
,”
Phys. Plasmas
20
(
1
),
012119
(
2013
).
32.
H.
Lütjens
,
J.-F.
Luciani
, and
X.
Garbet
, “
Curvature effects on the dynamics of tearing modes in tokamaks
,”
Phys. Plasmas
8
(
10
),
4267
4270
(
2001
).
33.
R.
Fitzpatrick
, “
Helical temperature perturbations associated with tearing modes in tokamak plasmas
,”
Phys. Plasmas
2
(
3
),
825
838
(
1995
).
34.
A.
Bruno
,
J. P.
Freidberg
, and
R. J.
Hastie
, “
Resistive magnetohydrodynamic transport model for a reversed field pinch. I. The model
,”
Phys. Plasmas
10
(
6
),
2330
2339
(
2003
).
35.
A. A.
Mirza
,
J.
Scheffel
, and
T.
Johnson
, “
Effect of thermal conduction on pressure-driven modes in the reversed-field pinch
,”
Nucl. Fusion
52
(
12
),
123012
(
2012
).
36.
D. D.
Schnack
,
J.
Killeen
, and
R. A.
Gerwin
, “
The non-linear evolution of resistive interchange modes in a reversed-field pinch
,”
Nucl. Fusion
21
(
11
),
1447
1456
(
1981
).
37.
C.
Sovinec
, “
Magnetohydrodynamic simulations of noninductive helicity injection in the reversed-field pinch and tokamak
,”
Report No. DOE/ER/53212-270
(
Univ. Wisconsin-Madison
,
1995
).
38.
J.
Scheffel
and
D. D.
Schnack
, “
Numerical studies of confinement scaling in the conventional reversed field pinch
,”
Nucl. Fusion
40
(
11
),
1885
1896
(
2000
).
39.
J.
Scheffel
and
J.-E.
Dahlin
, “
Confinement scaling in the advanced reversed-field pinch
,”
Plasma Phys. Controlled Fusion
48
(
11
),
L97
L104
(
2006
).
40.
J.-E.
Dahlin
and
J.
Scheffel
, “
Numerical studies of confinement scalings for the dynamo-free reversed-field pinch
,”
Nucl. Fusion
47
(
1
),
9
16
(
2006
).
41.
J. S.
Sarff
,
S. A.
Hokin
,
H.
Ji
,
S. C.
Prager
, and
C. R.
Sovinec
, “
Fluctuation and transport reduction in a reversed field pinch by inductive poloidal current drive
,”
Phys. Rev. Lett.
72
(
23
),
3670
3673
(
1994
).
42.
J. S.
Sarff
,
N. E.
Lanier
,
S. C.
Prager
, and
M. R.
Stoneking
, “
Increased confinement and β by inductive poloidal current drive in the reversed field pinch
,”
Phys. Rev. Lett.
78
(
1
),
62
65
(
1997
).
43.
C. R.
Sovinec
and
S. C.
Prager
, “
Magnetohydrodynamic effects of current profile control in reversed field pinches
,”
Nucl. Fusion
39
(
6
),
777
790
(
1999
).
44.
J. M.
Reynolds
,
C. R.
Sovinec
, and
S. C.
Prager
, “
Nonlinear magnetohydrodynamics of pulsed parallel current drive in reversed-field pinches
,”
Phys. Plasmas
15
(
6
),
062512
(
2008
).
45.
M.
Onofri
,
F.
Malara
, and
P.
Veltri
, “
Effects of anisotropic thermal conductivity in magnetohydrodynamics simulations of a reversed-field pinch
,”
Phys. Rev. Lett.
105
(
21
),
215006
(
2010
).
46.
M.
Onofri
,
F.
Malara
, and
P.
Veltri
, “
Role of anisotropic thermal conductivity in the reversed-field pinch dynamics
,”
Phys. Plasmas
18
(
5
),
052502
(
2011
).
47.
V. V.
Mirnov
,
C. C.
Hegna
, and
S. C.
Prager
, “
Two-fluid tearing instability in force-free magnetic configuration
,”
Phys. Plasmas
11
(
9
),
4468
4482
(
2004
).
48.
J. R.
King
,
C. R.
Sovinec
, and
V. V.
Mirnov
, “
First-order finite-Larmor-radius effects on magnetic tearing in pinch configurations
,”
Phys. Plasmas
18
(
4
),
042303
(
2011
).
49.
We avoid the term “resistive g-mode,” which is used to refer to resistive interchange or to any pressure-driven resistive mode in the literature.
50.
T. M.
Biewer
,
D. J.
Den Hartog
,
D. J.
Holly
, and
M. R.
Stoneking
, “
Large area avalanche photodiode detector array upgrade for a ruby-laser Thomson scattering system
,”
Rev. Sci. Instrum.
74
(
3
),
1649
1652
(
2003
).
51.
C. R.
Sovinec
,
A. H.
Glasser
,
T. A.
Gianakon
,
D. C.
Barnes
,
R. A.
Nebel
,
S. E.
Kruger
,
D. D.
Schnack
,
S. J.
Plimpton
,
A.
Tarditi
, and
M. S.
Chu
, “
Nonlinear magnetohydrodynamics simulation using high-order finite elements
,”
J. Comput. Phys.
195
(
1
),
355
386
(
2004
).
52.
C. R.
Sovinec
, “
Stabilization of numerical interchange in spectral-element magnetohydrodynamics
,”
J. Comput. Phys.
319
,
61
78
(
2016
).
53.
E. C.
Howell
and
C. R.
Sovinec
, “
Solving the Grad–Shafranov equation with spectral elements
,”
Comput. Phys. Commun.
185
(
5
),
1415
1421
(
2014
).
54.
H.
Grad
and
H.
Rubin
, “
Hydromagnetic equilibria and force-free fields
,”
J. Nucl. Energy
7
(
3
),
284
285
(
1958
).
55.
V. D.
Shafranov
, “
On magnetohydrodynamical equilibrium configurations
,”
Sov. Phys. JETP
6
(
3
),
545
554
(
1958
).
56.
S. I.
Braginskii
, “
Transport processes in a plasma
,” in
Reviews of Plasma Physics
(
Consultants Bureau
,
New York
,
1965
), Vol.
1
.
57.
R.
Fridstrom
,
S.
Munaretto
,
L.
Frassinetti
,
B. E.
Chapman
,
P. R.
Brunsell
, and
J. S.
Sarff
, “
Tearing mode dynamics and locking in the presence of external magnetic perturbations
,”
Phys. Plasmas
23
(
6
),
062504
(
2016
).
58.
R.
Fitzpatrick
,
E.
Rossi
, and
E. P.
Yu
, “
Improved evolution equations for magnetic island chains in toroidal pinch plasmas subject to externally applied resonant magnetic perturbations
,”
Phys. Plasmas
8
(
10
),
4489
4500
(
2001
).
59.
K. J.
Bunkers
and
C. R.
Sovinec
, “
The influence of boundary and edge-plasma modeling in computations of axisymmetric vertical displacement
,”
Phys. Plasmas
27
(
11
),
112505
(
2020
).
60.
A. Y.
Aydemir
,
D. C.
Barnes
,
E. J.
Caramana
,
A. A.
Mirin
,
R. A.
Nebel
,
D. D.
Schnack
, and
A. G.
Sgro
, “
Compressibility as a feature of field reversal maintenance in the reversed-field pinch
,”
Phys. Fluids
28
(
3
),
898
(
1985
).
61.
M.
Onofri
,
F.
Malara
, and
P.
Veltri
, “
Effects of compressibility and heating in magnetohydrodynamics simulations of a reversed field pinch
,”
Phys. Plasmas
16
(
5
),
052508
(
2009
).
62.
D. J.
Den Hartog
,
J.-W.
Ahn
,
A. F.
Almagri
,
J. K.
Anderson
,
A. D.
Beklemishev
,
A. P.
Blair
,
F.
Bonomo
,
M. T.
Borchardt
,
D. L.
Brower
,
D. R.
Burke
,
M.
Cengher
,
B. E.
Chapman
,
S.
Choi
,
D. J.
Clayton
,
W. A.
Cox
,
S. K.
Combs
,
D.
Craig
,
H. D.
Cummings
,
V. I.
Davydenko
,
D. R.
Demers
,
B. H.
Deng
,
W. X.
Ding
,
F.
Ebrahimi
,
D. A.
Ennis
,
G.
Fiksel
,
C.
Foust
,
C. B.
Forest
,
P.
Franz
,
L.
Frassinetti
,
S.
Gangadhara
,
J. A.
Goetz
,
R. W.
Harvey
,
D. J.
Holly
,
B. F.
Hudson
,
A. A.
Ivanov
,
M. C.
Kaufman
,
A. V.
Kuritsyn
,
A. A.
Lizunov
,
T. W.
Lovell
,
R. M.
Magee
,
L.
Marrelli
,
P.
Martin
,
K. J.
McCollam
,
M. C.
Miller
,
V. V.
Mirnov
,
P. D.
Nonn
,
R.
O'Connell
,
S. P.
Oliva
,
P.
Piovesan
,
S. C.
Prager
,
I.
Predebon
,
J. A.
Reusch
,
J. S.
Sarff
,
V. A.
Svidzinski
,
T. D.
Tharp
,
M. A.
Thomas
,
Y.
Tsidulko
,
M. D.
Wyman
, and
T.
Yates
, “
Recent improvements in confinement and beta in the MST reversed-field pinch
,”
Nucl. Fusion
47
(
9
),
L17
L20
(
2007
).
63.
B. E.
Chapman
,
J. W.
Ahn
,
A. F.
Almagri
,
J. K.
Anderson
,
F.
Bonomo
,
D. L.
Brower
,
D. R.
Burke
,
K.
Caspary
,
D. J.
Clayton
,
S. K.
Combs
,
W. A.
Cox
,
D.
Craig
,
B. H.
Deng
,
D. J.
Den Hartog
,
W. X.
Ding
,
F.
Ebrahimi
,
D. A.
Ennis
,
G.
Fiksel
,
C. B.
Forest
,
C. R.
Foust
,
P.
Franz
,
S.
Gangadhara
,
J. A.
Goetz
,
M. C.
Kaufman
,
J. G.
Kulpin
,
A.
Kuritsyn
,
R. M.
Magee
,
M. C.
Miller
,
V. V.
Mirnov
,
P. D.
Nonn
,
R.
O'Connell
,
S. P.
Oliva
,
S. C.
Prager
,
J. A.
Reusch
,
J. S.
Sarff
,
H. D.
Stephens
,
M. D.
Wyman
, and
T.
Yates
, “
Improved-confinement plasmas at high temperature and high beta in the MST RFP
,”
Nucl. Fusion
49
(
10
),
104020
(
2009
).
64.
Y. L.
Ho
and
G. G.
Craddock
, “
Nonlinear dynamics of field maintenance and quasiperiodic relaxation in reversed-field pinches
,”
Phys. Fluids B
3
(
3
),
721
734
(
1991
).
65.
W. X.
Ding
,
D. L.
Brower
,
B. H.
Deng
,
A. F.
Almagri
,
D.
Craig
,
G.
Fiksel
,
V.
Mirnov
,
S. C.
Prager
,
J. S.
Sarff
, and
V.
Svidzinski
, “
The Hall dynamo effect and nonlinear mode coupling during sawtooth magnetic reconnection
,”
Phys. Plasmas
13
(
11
),
112306
(
2006
).
66.
V. V.
Mirnov
,
C. C.
Hegna
, and
S. C.
Prager
, “
A Hall dynamo effect driven by two-fluid tearing instability
,”
Plasma Phys. Rep.
29
(
7
),
566
570
(
2003
).
67.
J. P.
Sauppe
and
C. R.
Sovinec
, “
Two-fluid and finite Larmor radius effects on helicity evolution in a plasma pinch
,”
Phys. Plasmas
23
(
3
),
032303
(
2016
).
68.
J. P.
Freidberg
,
Ideal Magnetohydrodynamics
(
Plenum Press
,
New York
,
1987
).
69.
A.
Pletzer
, “
Energy principles for linear dissipative systems with application to resistive MHD stability
,”
Phys. Plasmas
4
(
9
),
3141
3151
(
1997
).
70.
G.
Fiksel
,
R. D.
Bengtson
,
M.
Cekic
,
D. D.
Hartog
,
S. C.
Prager
,
P.
Pribyl
,
J.
Sarff
,
C.
Sovinec
,
M. R.
Stoneking
,
R. J.
Taylor
,
P. W.
Terry
,
G. R.
Tynan
, and
A. J.
Wootton
, “
Measurement of magnetic fluctuation-induced heat transport in tokamaks and RFP
,”
Plasma Phys. Controlled Fusion
38
,
A213
A225
(
1996
).
71.
P. W.
Terry
,
G.
Fiksel
,
H.
Ji
,
A. F.
Almagri
,
M.
Cekic
,
D. J.
Den Hartog
,
P. H.
Diamond
,
S. C.
Prager
,
J. S.
Sarff
,
W.
Shen
,
M.
Stoneking
, and
A. S.
Ware
, “
Ambipolar magnetic fluctuation-induced heat transport in toroidal devices
,”
Phys. Plasmas
3
(
5
),
1999
2005
(
1996
).
72.
E. T.
Meier
and
U.
Shumlak
, “
A general nonlinear fluid model for reacting plasma-neutral mixtures
,”
Phys. Plasmas
19
(
7
),
072508
(
2012
).
73.
S.
Taheri
,
J. R.
King
, and
U.
Shumlak
, “
Time-discretization of a plasma-neutral MHD model with a semi-implicit leapfrog algorithm
,”
Comput. Phys. Commun.
274
,
108288
(
2022
).
74.
E. D.
Held
,
S. E.
Kruger
,
J.-Y.
Ji
,
E. A.
Belli
, and
B. C.
Lyons
, “
Verification of continuum drift kinetic equation solvers in NIMROD
,”
Phys. Plasmas
22
(
3
),
032511
(
2015
).
You do not currently have access to this content.