Electromagnetic “pinned” solitons in the form of stationary nonlinear waves are studied within the framework of an inertial magneto-hydrodynamic model. These structures, that can arise when a charged source moves in a magnetized plasma, have a velocity that is equal to the source velocity and, hence, appear as “pinned” structures that envelope the source. We investigate the excitation of such solitons in the Low Earth Orbit region due to the passage of charged orbital debris objects. The spatial size of these electromagnetic solitons, typically of the order of a few ion skin depths, can be very large in this region. Such solitons can be detected using a variety of ground- or orbit-based radio sounding techniques and may provide a convenient additional means of tracking small sized orbital debris objects that are difficult to spot optically.

1.
For information on debris data and visualization in the LEO region please visit https://platform.leolabs.space/visualization.
3.
A.
Horstmann
,
C.
Kebschull
,
S.
Müller
,
E.
Gamper
,
S.
Hesselbach
,
K.
Soggeberg
,
M. K.
Ben Larbi
,
M.
Becker
,
J.
Lorenz
,
C.
Wiedemann
, and
E.
Stoll
,
Aerospace
5
,
37
(
2018
).
4.
A.
Murtaza
,
S. J. H.
Pirzada
,
T.
Xu
, and
L.
Jianwei
,
IEEE Access
8
,
61000
(
2020
).
5.
E.
Christiansen
,
J.
Hyde
, and
R.
Bernhard
,
Adv. Space Res.
34
,
1097
(
2004
).
6.
J.-C.
Liou
, in
28th International Symposium on Space Technology and Science
,
Okinawa, Japan
, 5–12 June (
2011
).
7.
W.
Flury
,
A.
Massart
,
T.
Schildknecht
,
U.
Hugentobler
,
J.
Kuusela
, and
Z.
Sodnik
,
ESA Bull.
104
,
92
100
(
2000
).
8.
D.
Mehrholz
,
L.
Leushacke
,
W.
Flury
,
R.
Jehn
,
H.
Klinkrad
, and
M.
Landgraf
,
ESA Bull.
109
,
128
(
2002
).
9.
J.
Goree
,
Plasma Sources Sci. Technol.
3
,
400
(
1994
).
10.
A.
Juhasz
and
M.
Horanyi
,
J. Geophys. Res.
102
,
7237
, (
1997
).
11.
W. J.
Miloch
,
H. L.
Pécseli
, and
J.
Trulsen
,
Nonlinear Processes Geophys.
14
,
575
(
2007
).
12.
A.
Sen
,
S.
Tiwari
,
S.
Mishra
, and
P.
Kaw
,
Adv. Space Res.
56
,
429
(
2015
).
13.
S.
Jaiswal
,
P.
Bandyopadhyay
, and
A.
Sen
,
Phys. Rev. E
93
,
041201(R)
(
2016
).
14.
S. K.
Tiwari
and
A.
Sen
,
Phys. Plasmas
23
,
022301
(
2016
).
15.
S. K.
Tiwari
and
A.
Sen
,
Phys. Plasmas
23
,
100705
(
2016
).
16.
G.
Arora
,
P.
Bandyopadhyay
,
M. G.
Hariprasad
, and
A.
Sen
,
Phys. Plasmas
26
,
093701
(
2019
).
17.
A. S.
Truitt
and
C. M.
Hartzell
,
J. Spacecr. Rockets
57
,
876
(
2020
).
18.
A. S.
Truitt
and
C. M.
Hartzell
,
J. Spacecr. Rockets
57
,
975
(
2020
).
19.
A. S.
Truitt
and
C. M.
Hartzell
,
J. Spacecr. Rockets
58
,
848
(
2021
).
20.
G.
Arora
,
P.
Bandyopadhyay
,
M. G.
Hariprasad
, and
A.
Sen
,
Phys. Rev. E
103
,
013201
(
2021
).
21.
A.
Gurevich
,
Nonlinear Phenomena in the Ionosphere
, Vol.
10
(
Springer Science & Business Media
,
1978
).
22.
M. C.
Kelley
,
The Earth's Ionosphere: Plasma Physics and Electrodynamics
(
Academic Press
,
2009
).
23.
V. V.
Gavrishchaka
,
S. B.
Ganguli
, and
G. I.
Ganguli
,
Phys. Rev. Lett.
80
,
728
(
1998
).
24.
Y. A.
Berezin
and
V.
Karpman
,
Sov. Phys. JETP
19
,
1265
(
1964
).
25.
R.
Fitzpatrick
,
Plasma Physics: An Introduction
(
CRC Press
,
2014
).
26.
A.
Kumar
and
A.
Sen
,
New J. Phys.
22
,
073057
(
2020
).
27.
A.
Sen
,
S.
Yadav
,
G.
Ganguli
, and
C.
Crabtree
, in
2019 International Conference on Electromagnetics in Advanced Applications (ICEAA)
,
Granada, Spain
, 9–13 September (IEEE,
2019
), p.
156
.
28.
A.
Sen
,
A.
Kumar
,
S.
Yadav
,
G.
Ganguli
, and
C.
Crabtree
, in
2021 International Conference on Electromagnetics in Advanced Applications (ICEAA),
Honolulu, Hawaii, USA
, 9–13 August (IEEE,
2021
), p.
32
.
29.
T. R.
Akylas
,
J. Fluid Mech.
141
,
455
(
1984
).
30.
R.
Camassa
and
T.
Wu
,
Physica D
51
,
295
(
1991
).
31.
H.
Lewy
,
K.
Friedrichs
, and
R.
Courant
,
Math. Ann.
100
,
32
(
1928
).
32.
K.
Stasiewicz
,
J. Geophys. Res.
110
,
A03220
, (
2005
).
33.
M.
Gedalin
,
Phys. Plasmas
5
,
127
(
1998
).
34.
J. H.
Adlam
and
J. E.
Allen
,
Philos. Mag.
3
,
448
(
1958
).
35.
J. H.
Adlam
and
J. E.
Allen
,
Proc. Phys. Soc.
75
,
640
(
1960
).
36.
R.
Jastrow
and
C. A.
Pearse
,
J. Geophys. Res.
62
,
413
, (
1957
).
37.
L.
Kraus
and
K. M.
Watson
,
Phys. Fluids
1
,
480
(
1958
).
38.
K. P.
Chopra
,
Rev. Mod. Phys.
33
,
153
(
1961
).
39.
Y. L.
Al'pert
,
A. V.
Gurevich
, and
L. P.
Pitaevskiĭ
,
Sov. Phys. Usp.
6
,
13
(
1963
).
41.
G. S.
Lakhina
,
S.
Singh
,
R.
Rubia
, and
S.
Devanandhan
,
Plasma
4
,
681
(
2021
).
42.
A.
Bhattacharyya
,
Atmosphere
13
,
1637
(
2022
).
43.
K.
Stasiewicz
,
P. K.
Shukla
,
G.
Gustafsson
,
S.
Buchert
,
B.
Lavraud
,
B.
Thidé
, and
Z.
Klos
,
Phys. Rev. Lett.
90
,
085002
(
2003
).
44.
J.
Ekeberg
,
G.
Wannberg
,
L.
Eliasson
, and
K.
Stasiewicz
,
Ann. Geophys.
28
,
1299
(
2010
).
45.
J.
Ekeberg
,
G.
Wannberg
,
L.
Eliasson
, and
I.
Häggström
,
Earth, Planets Space
64
,
605
(
2012
).
46.
W.
Calvert
and
J.
Warnock
,
Proc. IEEE
57
,
1019
(
1969
).
47.
M.
Nicolls
, in
Advanced Maui Optical and Space Surveillance Technologies Conference
(Maui Economic Development Board,
2015
), p.
87
.
48.
J.
Wang
,
X.
Yue
,
F.
Ding
,
B.
Ning
,
L.
Jin
,
C.
Ke
,
N.
Zhang
,
Y.
Wang
,
H.
Yin
,
M.
Li
, and
Y.
Cai
,
Radio Sci.
57
,
e2022RS007472
, (
2022
).
49.
E.
Stansbery
,
D.
Kessler
,
T.
Tracy
,
M.
Matney
, and
J.
Stanley
,
Adv. Space Res.
16
,
5
(
1995
).
50.
Y.-L.
Xu
,
T.
Kennedy
, and
E.
Stansbery
, in
First International Orbital Debris Conference
(
2019
).
51.
A.
Houpert
, “
Pacific RIM: A rapidly expanding space market
,”
Acta Astronaut.
44
,
313
(
1999
).
52.
A.
Persico
,
P.
Kirkland
,
C.
Clemente
,
J.
Soraghan
, and
M.
Vasile
,
IEEE Trans. Aerosp. Electron. Syst.
55
,
476
(
2019
).
53.
J.
Vierinen
,
J.
Markkanen
,
H.
Krag
,
J.
Siminski
, and
A.
Mancas
, in
ESA Space Debris Office Proceedings
, edited by
T.
Flohrer
and
F.
Schmitz
(
2017
), Vol.
7
.
54.
J.
Vierinen
,
T.
Crydeland
,
D.
Kastinen
,
C.
Kebschull
,
J.
Kero
, and
H.
Krag
, in
2018 2nd URSI Atlantic Radio Science Meeting (at-RASC)
(IEEE,
2018
), p.
1
.
55.
D.
Kastinen
,
T.
Tveito
,
J.
Vierinen
, and
M.
Granvik
,
Ann. Geophys.
38
,
861
(
2020
).
You do not currently have access to this content.