Small (∼1 mm) neon pellet fragments are fired into DIII-D H-mode plasmas, and resulting trajectory-averaged photon efficiencies (neutral neon ionization events for every photon emitted) of S/XB85 are estimated for Ne-I 640 nm by dividing the estimated initial pellet fragment mass by the measured number of emitted Ne-I photons. The experiments are modeled by running the Lagrangian particle (LP) fluid/magneto-hydrodynamic pellet code to estimate axial ablation plume neon density profiles and temperature profiles at each pellet position. These solutions are then fed into the PrismSPECT collisional-radiative code, which calculates resulting neon charge states and photon emission rates, giving a profile-average of S/XB109. The burnthrough plasma minor radius predicted by LP (ρ0.63) is reasonably close to the experimental observation ρ0.6. The modeling indicates that local S/XB is not constant along the pellet trajectory but tends to increase with increasing ablation rate. Non-equilibrium kinetics are predicted to be very important, while line trapping is predicted to be relatively unimportant (for Ne-I 640 nm S/XB).

You do not currently have access to this content.