An approach to numerically modeling relativistic magnetrons, in which the electrons are represented with a relativistic fluid, is described. A principal effect in the operation of a magnetron is space-charge-limited (SCL) emission of electrons from the cathode. We have developed an approximate SCL emission boundary condition for the fluid electron model. This boundary condition prescribes the flux of electrons as a function of the normal component of the electric field on the boundary. We show the results of a benchmarking activity that applies the fluid SCL boundary condition to the one-dimensional Child–Langmuir diode problem and a canonical two-dimensional diode problem. Simulation results for a two-dimensional A6 magnetron are then presented. Computed bunching of the electron cloud occurs and coincides with significant microwave power generation. Numerical convergence of the solution is considered. Sharp gradients in the solution quantities at the diocotron resonance, spanning an interval of three to four grid cells in the most well-resolved case, are present and likely affect convergence.

1.
J.
Benford
,
J. A.
Swegle
, and
E.
Schamiloglu
,
High Power Microwaves
(
CRC Press
,
2007
).
2.
R.
Lemke
,
T.
Genoni
, and
T.
Spencer
, “
Three-dimensional particle-in-cell simulation study of a relativistic magnetron
,”
Phys. Plasmas
6
,
603
613
(
1999
).
3.
R. C.
Davidson
,
Physics of Nonneutral Plasmas
(
World Scientific Publishing Company
,
2001
).
4.
Y.
Lau
,
D. A.
Packard
,
C. J.
Swenson
,
J. W.
Luginsland
,
D.
Li
,
A.
Jassem
,
N. M.
Jordan
,
R. D.
McBride
, and
R. M.
Gilgenbach
, “
Explicit Brillouin flow solutions in magnetrons, magnetically insulated line oscillators, and radial magnetically insulated transmission lines
,”
IEEE Trans. Plasma Sci.
49
,
3418
3437
(
2021
).
5.
O.
Buneman
,
R.
Levy
, and
L.
Linson
, “
Stability of crossed-field electron beams
,”
J. Appl. Phys.
37
,
3203
3222
(
1966
).
6.
D.
Kaup
,
S. R.
Choudhury
, and
G. E.
Thomas
, “
Full second-order cold-fluid theory of the diocotron and magnetron resonances
,”
Phys. Rev. A
38
,
1402
(
1988
).
7.
M.
Desjarlais
and
R.
Sudan
, “
Electron diffusion and leakage currents in magnetically insulated diodes
,”
Phys. Fluids
30
,
1536
1552
(
1987
).
8.
S.
Riyopoulos
, “
Magnetron theory
,”
Phys. Plasmas
3
,
1137
1161
(
1996
).
9.
D.
Kaup
, “
Drift resonance in high density non-neutral plasmas
,”
Phys. Plasmas
13
,
053113
(
2006
).
10.
A.
Anders
,
Cathodic Arcs: From Fractal Spots to Energetic Condensation
(
Springer Science & Business Media
,
2009
), Vol.
50
.
11.
J.
Watrous
,
J.
Lugisland
, and
G.
Sasser
 III
, “
An improved space-charge-limited emission algorithm for use in particle-in-cell codes
,”
Phys. Plasmas
8
,
289
296
(
2001
).
12.
B.
Goplen
,
L.
Ludeking
,
D.
Smith
, and
G.
Warren
, “
User-configurable MAGIC for electromagnetic PIC calculations
,”
Comput. Phys. Commun.
87
,
54
86
(
1995
).
13.
P. H.
Stoltz
,
J. W.
Luginsland
,
A.
Chap
,
D. N.
Smithe
, and
J. R.
Cary
, “
A new simple algorithm for space charge limited emission
,”
Phys. Plasmas
27
,
093103
(
2020
).
14.
R. E.
Clark
,
D. R.
Welch
,
W.
Zimmerman
,
C.
Miller
,
T. C.
Genoni
,
D. V.
Rose
,
D.
Price
,
P.
Martin
,
D.
Short
,
A.
Jones
 et al., “
Locally conformal finite-difference time-domain techniques for particle-in-cell plasma simulation
,”
J. Comput. Phys.
230
,
695
705
(
2011
).
15.
F. W.
Glines
,
K. R.
Beckwith
,
J. R.
Braun
,
E. C.
Cyr
,
C. C.
Ober
,
M.
Bettencourt
,
K. L.
Cartwright
,
S.
Conde
,
S. T.
Miller
,
N.
Roberds
 et al., “
A robust, performance-portable discontinuous Galerkin method for relativistic hydrodynamics
,” arXiv:2205.00095 (
2022
).
16.
S. T.
Miller
,
E. C.
Cyr
,
J. N.
Shadid
,
R. M. J.
Kramer
,
E. G.
Phillips
,
S.
Conde
, and
R. P.
Pawlowski
, “
IMEX and exact sequence discretization of the multi-fluid plasma model
,”
J. Comput. Phys.
397
,
108806
(
2019
).
17.
A.
Mignone
and
G.
Bodo
, “
An HLLC Riemann solver for relativistic flows–I. Hydrodynamics
,”
Mon. Not. R. Astron. Soc.
364
,
126
136
(
2005
).
18.
V.
Schneider
,
U.
Katscher
,
D.
Rischke
,
B.
Waldhauser
,
J.
Maruhn
, and
C.-D.
Munz
, “
New algorithms for ultra-relativistic numerical hydrodynamics
,”
J. Comput. Phys.
105
,
92
107
(
1993
).
19.
G.
Mengaldo
,
D.
De Grazia
,
F.
Witherden
,
A.
Farrington
,
P.
Vincent
,
S.
Sherwin
, and
J.
Peiro
, “
A guide to the implementation of boundary conditions in compact high-order methods for compressible aerodynamics
,” in
7th AIAA Theoretical Fluid Mechanics Conference
, Atlanta, GA,
2014
.
20.
R.
Umstattd
and
J.
Luginsland
, “
Two-dimensional space-charge-limited emission: Beam-edge characteristics and applications
,”
Phys. Rev. Lett.
87
,
145002
(
2001
).
21.
A.
Jassem
,
D.
Chernin
,
J. J.
Petillo
,
Y.
Lau
,
A.
Jensen
, and
S.
Ovtchinnikov
, “
Analysis of anode current from a thermionic cathode with a 2-D work function distribution
,”
IEEE Trans. Plasma Sci.
49
,
749
755
(
2021
).
22.
A.
Rokhlenko
, “
Space charge limited flow in a rectangular region: Profile of the current density
,”
J. Appl. Phys.
100
,
013305
(
2006
).
23.
J.
Luginsland
,
Y.
Lau
,
R.
Umstattd
, and
J.
Watrous
, “
Beyond the Child–Langmuir law: A review of recent results on multidimensional space-charge-limited flow
,”
Phys. Plasmas
9
,
2371
2376
(
2002
).
24.
A.
Palevsky
and
G.
Bekefi
, “
Microwave emission from pulsed, relativistic e-beam diodes. II. The multiresonator magnetron
,”
Phys. Fluids
22
,
986
996
(
1979
).
25.
J. D.
Jackson
,
Classical Electrodynamics
(
Wiley and Sons
,
1999
).
26.
D.
Simon
,
Y.
Lau
,
G.
Greening
,
P.
Wong
,
B.
Hoff
, and
R.
Gilgenbach
, “
Stability of Brillouin flow in the presence of slow-wave structure
,”
Phys. Plasmas
23
,
092101
(
2016
).
27.
H.-W.
Chan
,
C.
Chen
, and
R. C.
Davidson
, “
Numerical study of relativistic magnetrons
,”
J. Appl. Phys.
73
,
7053
7060
(
1993
).
28.
D.
Kaup
and
G. E.
Thomas
, “
A model magnetron distribution function: Analysis and scalings
,”
Phys. Fluids
31
,
2362
2365
(
1988
).
29.
A.
Taub
, “
Relativistic Rankine-Hugoniot equations
,”
Phys. Rev.
74
,
328
(
1948
).
30.
A.
Mignone
,
T.
Plewa
, and
G.
Bodo
, “
The piecewise parabolic method for multidimensional relativistic fluid dynamics
,”
Astrophys. J. Suppl. Ser.
160
,
199
(
2005
).
You do not currently have access to this content.