We elucidate the intermediate of the macroscopic fluid model and the microscopic kinetic model by studying the Poisson algebraic structure of the one-dimensional Vlasov–Poisson system. The water-bag model helps formulating the hierarchy of sub-algebras, which interpolates the gap between the fluid and kinetic models. By analyzing the embedding of the sub-manifold of an intermediate hierarchy in a more microscopic hierarchy, we characterize the microscopic effect as the symmetry breaking pertinent to a macroscopic invariant.

1.
E.
Tassi
, “
Hamiltonian closures in fluid models for plasmas
,”
Eur. Phys. J. D
71
,
269
(
2017
).
2.
M.
Perin
,
C.
Chandre
,
P.
Morrison
, and
E.
Tassi
, “
Higher-order Hamiltonian fluid reduction of Vlasov equation
,”
Ann. Phys.
348
,
50
63
(
2014
).
3.
M.
Perin
,
C.
Chandre
,
P.
Morrison
, and
E.
Tassi
, “
Hamiltonian closures for fluid models with four moments by dimensional analysis
,”
J. Phys. A: Math. Theor.
48
,
275501
(
2015
).
4.
C.
Chandre
,
L.
De Guillebon
,
A.
Back
,
E.
Tassi
, and
P. J.
Morrison
, “
On the use of projectors for Hamiltonian systems and their relationship with Dirac brackets
,”
J. Phys. A: Math. Theor.
46
,
125203
(
2013
).
5.
P. J.
Morrison
, “
The Maxwell–Vlasov equations as a continuous Hamiltonian system
,”
Phys. Lett. A
80
,
383
386
(
1980
).
6.
J.
Marsden
and
A.
Weinstein
, “
Reduction of symplectic manifolds with symmetry
,”
Rep. Math. Phys.
5
,
121
130
(
1974
).
7.
P. J.
Morrison
, “
Hamiltonian description of the ideal fluid
,”
Rev. Mod. Phys.
70
,
467
(
1998
).
8.
P. J.
Morrison
, “
Poisson brackets for fluids and plasmas
,” in
AIP Conference Proceedings
(
American Institute of Physics
,
1982
), Vol.
88
, pp.
13
46
.
9.
Z.
Yoshida
, “
Self-organization by topological constraints: Hierarchy of foliated phase space
,”
Adv. Phys.: X
1
,
2
19
(
2016
).
10.
Z.
Yoshida
and
P. J.
Morrison
, “
The kinetic origin of the fluid helicity—A symmetry in the kinetic phase space
,”
J. Math. Phys.
63
,
023101
(
2022
).
11.
K.
Tanehashi
and
Z.
Yoshida
, “
Gauge symmetries and Noether charges in Clebsch-parameterized magnetohydrodynamics
,”
J. Phys. A: Math. Theor.
48
,
495501
(
2015
).
12.
P.
Bertrand
and
M.
Feix
, “
Non linear electron plasma oscillation: The ‘water bag model’
,”
Phys. Lett. A
28
,
68
69
(
1968
).
13.
M.
Perin
,
C.
Chandre
, and
E.
Tassi
, “
Hamiltonian fluid reductions of drift-kinetic equations and the link with water-bags
,”
J. Phys. A: Math. Theor.
49
,
305501
(
2016
).
14.
M.
Perin
,
C.
Chandre
,
P.
Morrison
, and
E.
Tassi
, “
Hamiltonian fluid closures of the Vlasov–Ampère equations: From water-bags to N moment models
,”
Phys. Plasmas
22
,
092309
(
2015
).
15.
J.
Tennyson
,
J.
Meiss
, and
P.
Morrison
, “
Self-consistent chaos in the beam-plasma instability
,”
Phys. D: Nonlinear Phenom.
71
,
1
17
(
1994
).
16.
H.
Sato
,
T.-H.
Watanabe
, and
S.
Maeyama
, “
Contour dynamics for one-dimensional Vlasov–Poisson plasma with the periodic boundary
,”
J. Comput. Phys.
445
,
110626
(
2021
).
You do not currently have access to this content.