Arc plasmas have promising applications in many fields, and exploring their properties is of interest. This research paper presents detailed pressure-based finite volume simulations of an argon arc. Simulations of the free-burning argon arc show good agreement with experiment. We observe an interesting phenomenon that an argon arc concentrates intensively in a high-frequency alternating longitudinal magnetic field. This is different from existing constricting mechanisms, as here the arc is pinched through continuous dynamic transitions between shrinking and expansion. The underlying mechanism is that via working together with an arc's motion inertia, the applied high-frequency alternating magnetic field is able to effectively play a “plasma trap” role, which leads the arc plasma to be confined to a narrower space. This finding may provide a new approach to constrict arc plasmas.

1.
K. C.
Hsu
,
K.
Etemadi
, and
E.
Pfender
,
J. Appl. Phys.
54
,
1293
1301
(
1983
).
2.
A.
Gleizes
,
J. J.
Gonzalez
, and
P.
Freton
,
J. Phys. D
38
,
R153
R183
(
2005
).
3.
Y.
Suga
and
A.
Hasui
,
J. Jpn. Weld. Soc.
4
,
691
696
(
1986
).
4.
Y.
Suga
and
A.
Hasui
,
J. Jpn. Weld. Soc.
6
,
86
91
(
1988
).
5.
W. M.
Steen
,
J. Appl. Phys.
51
,
5636
5641
(
1980
).
6.
V. V.
Avilov
,
I.
Decke
,
H.
Pursch
, and
J.
Wendelstorf
,
Weld. J.
11
,
112
123
(
1994
).
7.
D. S.
Howsea
and
W.
Lucasa
,
Sci. Technol. Weld. Joining
5
,
189
193
(
2000
).
8.
G. E.
Cook
and
H. E.-D. E. H.
Eassa
,
IEEE Trans. Ind. Appl.
IA-21
,
1294
1299
(
1985
).
9.
B. J.
Qi
,
M. X.
Yang
,
B. Q.
Cong
, and
F. J.
Liu
,
Int. J. Adv. Manuf. Technol.
66
,
1545
1553
(
2013
).
10.
B.
Bagchi
,
Int. J. Res. Eng. Technol.
2
,
723
732
(
2013
).
11.
Y.
Arata
and
H.
Maruo
,
Trans. JWRI
1
,
1
9
(
1972
).
12.
K.
Nomura
,
K.
Morisaki
, and
Y.
Hirata
,
Weld. World
53
,
181
187
(
2009
).
13.
K.
Nomura
,
Y.
Ogino
,
T.
Haga
, and
Y.
Hirata
,
Trans. JWRI
39
,
209
210
(
2010
).
14.
A.
Zhainakov
,
R. M.
Urusov
, and
T. E.
Urusova
,
High Temp.
40
,
171
175
(
2002
).
15.
S.
Ukita
,
T.
Masuko
, and
T.
Irie
,
Weld. Int.
17
,
541
549
(
2003
).
16.
Y.
Yamamoto
,
K.
Iwai
, and
S.
Asai
,
ISIJ Int.
47
,
960
964
(
2007
).
17.
K.
Goldman
and
E. S.
White
,
Br. J. Appl. Phys.
16
,
907
908
(
1965
).
18.
H. E.
Wilhelm
and
S. H.
Hong
,
J. Appl. Phys.
48
,
561
(
1977
).
19.
J.
Yu
,
J.
Zhang
,
L.
Jiang
,
X.
Jiao
,
C.
Jia
, and
Y.
Shi
,
Trans. Nonferrous Met. Soc. China
7
,
95
98
(
1997
).
20.
L.
Li
and
W.
Xia
,
Chin. Phys. B
17
,
649
654
(
2008
).
21.
X.
Yin
,
J.
Gou
,
J.
Zhang
, and
J.
Sun
,
J. Phys. D
45
,
285203
(
2012
).
22.
T.
Chen
,
X.
Zhang
,
B.
Bai
,
Z.
Xu
,
C.
Wang
, and
W.
Xia
,
Plasma Chem. Plasma Process.
35
,
61
74
(
2015
).
23.
W.
Xia
,
L.
Li
,
Y.
Zhao
,
Q.
Ma
,
B.
Du
,
Q.
Chen
, and
L.
Cheng
,
Appl. Phys. Lett.
88
,
211501
(
2006
).
24.
J.
Mckelliget
and
J.
Szekely
,
Metall. Trans. A
17A
,
1139
1148
(
1986
).
25.
G. Y.
Zhao
,
M.
Dassanayake
, and
K.
Etemadi
,
Plasma Chem. Plasma Process.
10
,
87
98
(
1990
).
26.
C. S.
Wu
,
M.
Ushio
, and
M.
Tanaka
,
Comput. Mater. Sci.
7
,
308
314
(
1997
).
27.
J.
Menart
and
L.
Lin
,
Plasma Chem. Plasma Process.
19
,
153
170
(
1999
).
28.
J. J.
Lowke
,
R.
Morrow
, and
J.
Haidar
,
J. Phys. D
30
,
2033
2042
(
1997
).
29.
J.
Menart
,
S.
Malik
, and
L.
Lin
,
J. Phys. D
33
,
257
269
(
2000
).
30.
T.
Toh
,
J.
Tanaka
,
Y.
Maruki
,
T.
Yamamoto
, and
K.
Takeda
,
ISIJ Int.
45
,
947
953
(
2005
).
31.
J.
Mostaghimi
,
P.
Proulx
, and
M. I.
Boulos
,
J. Appl. Phys.
61
,
1753
1760
(
1987
).
32.
S. V.
Patankar
and
D. B.
Spalding
,
Int. J. Heat Mass Transfer
15
,
1787
1806
(
1972
).
33.
A. B.
Murphy
and
C. J.
Arundel
,
Plasma Chem. Plasma Process.
14
,
451
490
(
1994
).
34.
V.
Colombo
,
E.
Ghedini
, and
P.
Sanibondi
,
Prog. Nucl. Energy
50
,
921
933
(
2008
).
35.
A. B.
Murphy
and
E.
Tam
,
J. Phys. D
47
,
295202
(
2014
).
36.
W.
Paul
and
H.
Steinwedel
,
Zeitschrift für Naturforschung A
8
,
448
450
(
1953
).
You do not currently have access to this content.