Liquid metal can create a renewable protective surface on plasma facing components (PFC), with an additional advantage of deuterium pumping and the prospect of tritium extraction if liquid lithium (LL) is used and maintained below 450 °C, the temperature above which LL vapor pressure begins to contaminate the plasma. LM can also be utilized as an efficient coolant, driven by the Lorentz force created with the help of the magnetic field in fusion devices. Capillary porous systems can serve as a conduit of LM and simultaneously provide stabilization of the LM flow, protecting against spills into the plasma. Recently, a combination of a fast-flowing LM cooling system with a porous plasma facing wall (CPSF) was investigated [A. Khodak and R. Maingi, Nucl. Mater. Energy 26, 100935 (2021)]. The system takes an advantage of a magnetohydrodynamics velocity profile as well as attractive LM properties to promote efficient heat transfer from the plasma to the LL at low pumping energy cost, relative to the incident heat flux on the PFC. In the case of a disruption leading to excessive heat flux from the plasma to the LM PFCs, LL evaporation can stabilize the PFC surface temperature, due to high evaporation heat and apparent vapor shielding. The proposed CPSF was optimized analytically for the conditions of a fusion nuclear science facility [Kessel et al., Fusion Sci. Technol. 75, 886 (2019)]: 10 T toroidal field and 10 MW/m2 peak incident heat flux. Computational fluid dynamics analysis confirmed that a CPSF system with 2.5 mm square channels can pump enough LL so that no additional coolant is needed.

1.
J. E.
Menard
,
M. G.
Bell
,
R. E.
Bell
,
E. D.
Fredrickson
,
D. A.
Gates
,
S. M.
Kaye
,
B. P.
LeBlanc
,
R.
Maingi
,
D.
Mueller
, and
S. A.
Sabbagh
,
Nucl. Fusion
43
,
330
(
2003
).
2.
R. J.
Goldston
,
R.
Myers
, and
J.
Schwartz
,
Phys. Scr.
T167
,
014017
(
2016
).
3.
T. D.
Rognlien
,
M. E.
Rensink
,
E.
Emdee
,
R. J.
Goldston
,
J.
Schwartz
, and
D. P.
Stotler
,
Nucl. Mater. Energy
18
,
233
(
2019
).
4.
L. E.
Zakharov
,
J. P.
Allain
,
S. X.
Bennett
,
M. A. E.
Abdelghany
, and
D. G.
Bulgadaryan
,
IEEE Trans. Plasma Sci.
48
,
1849
(
2020
).
5.
C. E.
Kessel
,
D.
Andruczyk
,
J. P.
Blanchard
,
T.
Bohm
,
A.
Davis
,
K.
Hollise
,
P. W.
Humrickhouse
,
M.
Hvasta
,
M.
Jaworski
,
J.
Jun
 et al.,
Fusion Sci. Technol.
75
,
886
(
2019
).
6.
P.
Rindt
,
N. J.
Lopes Cardozoa
,
J. A.
van Dommelena
,
R.
Kaitab
, and
M. A.
Jaworski
,
Fusion Eng. Des.
112
,
204
(
2016
).
7.
A.
Khodak
and
R.
Maingi
,
Nucl. Mater. Energy
26
,
100935
(
2021
).
8.
R.
Maingi
,
M. G.
Bell
,
R. E.
Bell
,
J.
Bialek
,
C.
Bourdelle
,
C. E.
Bush
,
D. S.
Darrow
,
E. D.
Fredrickson
,
D. A.
Gates
,
M.
Gilmore
 et al.,
Plasma Phys. Controlled Fusion
45
,
657
(
2003
).
9.
D. A.
Gates
,
J.
Menard
,
R.
Maingi
,
S.
Kaye
,
S. A.
Sabbagh
,
S.
Diem
,
J. R.
Wilson
,
M. G.
Bell
,
R. E.
Bell
,
J.
Ferron
 et al.,
Nucl. Fusion
47
,
1376
(
2007
).
10.
H.
Carslaw
and
J.
Jaeger
,
Conduction of Heat in Solids
(
Oxford University Press
,
1947
).
11.
G. A.
Grinberg
,
Appl. Math. Mech.
25
,
1536
(
1961
).
12.
G. A.
Grinberg
,
Appl. Math. Mech.
26
,
106
(
1962
).
13.
J. C. R.
Hunt
and
K.
Stewartson
,
J. Fluid Mech.
23
,
563
(
1965
).
14.
S.
Chiang
and
T.
Lundgren
,
Z. Angew. Math. Phys.
18
,
92
(
1967
).
15.
A.
Khodak
and
M.
Jaworski
,
IEEE Trans. Plasma Sci.
42
,
2161
(
2014
).
16.
R. F.
Mattas
,
J. P.
Allain
,
R.
Bastasz
,
J. N.
Brooks
,
T.
Evans
,
A.
Hassanein
,
S.
Luckhardt
,
K.
McCarthy
,
P.
Mioduszewski
,
R.
Maingi
 et al.,
Fus. Eng. Des.
49–50
,
127
(
2000
).
17.
H. W.
Davison
, “
Compilation of thermophysical properties of liquid lithium
,”
Report No. NASA TN D-4650
(
NASA
,
1968
).
18.
A. E.
Khodak
,
P.
Titus
,
T.
Brown
, and
J.
Klabacha
,
Fusion Eng. Des.
137
,
124
(
2018
).
19.
T.
Eich
,
B.
Sieglin
,
A.
Scarabosio
,
A.
Herrmann
,
A.
Kallenbach
,
G. F.
Matthews
,
S.
Jachmich
,
S.
Brezinseke
,
M.
Racke
, and
R. J.
Goldston
,
J. Nucl. Mater.
438
,
S72
(
2013
).
20.
A.
Khodak
and
R.
Maingi
, see http://arks.princeton.edu/ark:/88435/dsp019w032619d for “
Plasma facing components with capillary porous system and liquid metal coolant flow
,” DataSpace at Princeton University (
2021
).
You do not currently have access to this content.