We study the process of nonlinear shock acceleration based on a nonlinear diffusion–advection equation. The nonlinearity is introduced via a dependence of the spatial diffusion coefficient on the distribution function of accelerating particles. This dependence reflects the interaction of energetic particles with self-generated waves. After thoroughly testing the grid-based numerical setup with a well-known analytical solution for linear shock acceleration at a specific shock transition, we consider different nonlinear scenarios, assess the influence of various parameters, and discuss the differences of the solutions to those of the linear case. We focus on the following observable features of the acceleration process, for which we quantify the differences in the linear and nonlinear cases: (1) the shape of the momentum spectra of the accelerated particles, (2) the time evolution of the solutions, and (3) the spatial number density profiles.

1.
Achterberg
,
A.
and
Krulls
,
W. M.
, “
A fast simulation method for particle acceleration
,”
Astron. Astrophys.
265
,
L13
L16
(
1992
).
2.
Amato
,
E.
and
Blasi
,
P.
, “
Cosmic ray transport in the Galaxy: A review
,”
Adv. Space Res.
62
,
2731
2749
(
2018
).
3.
Amato
,
E.
and
Casanova
,
S.
, “
On particle acceleration and transport in plasmas in the Galaxy: Theory and observations
,”
J. Plasma Phys.
87
,
845870101
(
2021
).
4.
Arbutina
,
B.
and
Zeković
,
V.
, “
Non-linear diffusive shock acceleration: A recipe for injection of electrons
,”
Astroparticle Phys.
127
,
102546
(
2021
).
5.
Battarbee
,
M.
,
Laitinen
,
T.
, and
Vainio
,
R.
, “
Heavy-ion acceleration and self-generated waves in coronal shocks
,”
Astron. Astrophys.
535
,
A34
(
2011
).
6.
Bell
,
A. R.
, “
The acceleration of cosmic rays in shock fronts-I
,”
Mon. Not. R. Astron. Soc.
182
,
147
156
(
1978
).
7.
Berezinskii
,
V.
,
Bulanov
,
S.
,
Dogiel
,
V.
, and
Ptuskin
,
V.
,
Astrophysics of Cosmic Rays
(
Elsevier Science Ltd
,
1990
).
8.
Blasi
,
P.
, “
Non-linear cosmic ray propagation
,”
Nucl. Part. Phys. Proc.
297–299
,
115
124
(
2018
).
9.
Blom
,
J. G.
and
Verwer
,
J. G.
, “
VLUGR3: A vectorizable adaptive grid solver for PDEs in 3D, part I: Algorithmic aspects and applications department of numerical mathematics
,”
Appl. Numer. Math.
16
,
129
156
(
1994
).
10.
Bogdan
,
T. J.
,
Lee
,
M. A.
, and
Schneider
,
P.
, “
Coupled quasi-linear wave damping and stochastic acceleration of pickup ions in the solar wind
,”
J. Geophys. Res.
96
,
161
178
, (
1991
).
11.
Brahimi
,
L.
,
Marcowith
,
A.
, and
Ptuskin
,
V. S.
, “
Nonlinear diffusion of cosmic rays escaping from supernova remnants: Cold partially neutral atomic and molecular phases
,”
Astron. Astrophys.
633
,
A72
(
2020
).
12.
Bykov
,
A. M.
,
Ellison
,
D. C.
,
Marcowith
,
A.
, and
Osipov
,
S. M.
, “
Cosmic ray production in supernovae
,”
Space Sci. Rev.
214
,
41
(
2018
).
13.
Bykov
,
A. M.
,
Ellison
,
D. C.
,
Osipov
,
S. M.
, and
Vladimirov
,
A. E.
, “
Magnetic field amplification in nonlinear diffusive shock acceleration including resonant and non-resonant cosmic-ray driven instabilities
,”
Astrophys. J.
789
,
137
(
2014
).
14.
Diesing
,
R.
and
Caprioli
,
D.
, “
Spectrum of electrons accelerated in supernova remnants
,”
Phys. Rev. Lett.
123
,
071101
(
2019
).
15.
Drury
,
L. O.
, “
Review article: An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas
,”
Rep. Prog. Phys.
46
,
973
1027
(
1983
).
16.
Fichtner
,
H.
, “
Cosmic rays in the heliosphere: Progress in the modelling during the past 10 years
,”
Adv. Space Res.
35
,
512
517
(
2005
).
17.
Fichtner
,
H.
,
Potgieter
,
M.
,
Ferreira
,
S.
, and
Burger
,
A.
, “
On the propagation of Jovian electrons in the heliosphere: Transport modelling in 4-D phase space
,”
Geophys. Res. Lett.
27
,
1611
1614
, (
2000
).
18.
Fisk
,
L. A.
, “
An overview of the transport of galactic and anomalous cosmic rays in the heliosphere: Theory
,”
Adv. Space Res.
23
,
415
423
(
1999
).
19.
Florinski
,
V.
and
Jokipii
,
J. R.
, “
Cosmic-ray spectra at spherical termination shocks
,”
Astrophys. J.
591
,
454
460
(
2003
).
20.
Holcomb
,
C.
and
Spitkovsky
,
A.
, “
On the growth and saturation of the gyroresonant streaming instabilities
,”
Astrophys. J.
882
,
3
(
2019
).
21.
le Roux
,
J. A.
and
Fichtner
,
H.
, “
A self-consistent determination of the heliospheric termination shock structure in the presence of pickup, anomalous, and galactic cosmic ray protons
,”
J. Geophys. Res.
102
,
17365
17380
, (
1997
).
22.
le Roux
,
J. A.
and
Ptuskin
,
V. S.
, “
Galactic cosmic-ray mediation of a spherical solar wind flow. II. The steady state hydromagnetic approximation
,”
Astrophys. J.
452
,
423
(
1995
).
23.
le Roux
,
J. A.
and
Ptuskin
,
V. S.
, “
Self-consistent stochastic preacceleration of interstellar pickup ions in the solar wind including the effects of wave coupling and damping
,”
J. Geophys. Res.
103
,
4799
, (
1998
).
24.
Lee
,
M. A.
,
Mewaldt
,
R. A.
, and
Giacalone
,
J.
, “
Shock acceleration of ions in the heliosphere
,”
Space Sci. Rev.
173
,
247
281
(
2012
).
25.
Litvinenko
,
Y. E.
,
Fichtner
,
H.
, and
Walter
,
D.
, “
Anomalous transport of cosmic rays in a nonlinear diffusion model
,”
Astrophys. J.
841
,
57
(
2017
).
26.
Litvinenko
,
Y. E.
,
Walter
,
D.
, and
Fichtner
,
H.
, “
A nonlinear energetic particle diffusion model with a variable source
,”
AIP Adv.
9
,
055005
(
2019
).
27.
Liu
,
S.
and
Jokipii
,
J. R.
, “
Acceleration of charged particles in astrophysical plasmas
,”
Front. Astron. Space Sci.
8
,
651830
(
2021
).
28.
Mertsch
,
P.
, “
Test particle simulations of cosmic rays
,”
Astrophys. Space Sci.
365
,
135
(
2020
).
29.
Moloto
,
K. D.
,
Engelbrecht
,
N. E.
, and
Burger
,
R. A.
, “
A simplified ab initio cosmic-ray modulation model with simulated time dependence and predictive capability
,”
Astrophys. J.
859
,
107
(
2018
).
30.
Nava
,
L.
,
Recchia
,
S.
,
Gabici
,
S.
,
Marcowith
,
A.
,
Brahimi
,
L.
, and
Ptuskin
,
V.
, “
Non-linear diffusion of cosmic rays escaping from supernova remnants-II. Hot ionized media
,”
Mon. Not. R. Astron. Soc.
484
,
2684
2691
(
2019
).
31.
Parker
,
E. N.
, “
The passage of energetic charged particles through interplanetary space
,”
Planet. Space Sci.
13
,
9
49
(
1965
).
32.
Perri
,
S.
,
Amato
,
E.
, and
Zimbardo
,
G.
, “
Transport of relativistic electrons at shocks in shell-type supernova remnants: Diffusive and superdiffusive regimes
,”
Astron. Astrophys.
596
,
A34
(
2016
).
33.
Potgieter
,
M. S.
, “
Solar modulation of cosmic rays
,”
Living Rev. Sol. Phys.
10
,
3
(
2013
).
34.
Potgieter
,
M. S.
and
Moraal
,
H.
, “
Acceleration of cosmic rays in the solar wind termination shock. I. A steady state technique in a spherically symmetric model
,”
Astrophys. J.
330
,
445
(
1988
).
35.
Ptuskin
,
V.
,
Zirakashvili
,
V.
, and
Seo
,
E.-S.
, “
Spectra of cosmic-ray protons and helium produced in supernova remnants
,”
Astrophys. J.
763
,
47
(
2013
).
36.
Ptuskin
,
V. S.
and
Zirakashvili
,
V. N.
, “
Limits on diffusive shock acceleration in supernova remnants in the presence of cosmic-ray streaming instability and wave dissipation
,”
Astron. Astrophys.
403
,
1
10
(
2003
).
37.
Ptuskin
,
V. S.
,
Zirakashvili
,
V. N.
, and
Plesser
,
A. A.
, “
Non-linear diffusion of cosmic rays
,”
Adv. Space Res.
42
,
486
490
(
2008
).
38.
Reichherzer
,
P.
,
Becker Tjus
,
J.
,
Zweibel
,
E. G.
,
Merten
,
L.
, and
Pueschel
,
M. J.
, “
Turbulence-level dependence of cosmic ray parallel diffusion
,”
Mon. Not. R. Astron. Soc.
498
,
5051
5064
(
2020
).
39.
Scherer
,
K.
,
Fichtner
,
H.
, and
Fahr
,
H. J.
, “
The acceleration time of anomalous cosmic rays: Observational constraints from Pioneer 10 data
,”
J. Geophys. Res.
103
,
2105
2114
, (
1998
).
40.
Schlickeiser
,
R.
,
Cosmic Ray Astrophysics
(
Springer
,
2002
).
41.
Schlickeiser
,
R.
, “
Cosmic ray transport in astrophysical plasmas
,”
Phys. Plasmas
22
,
091502
(
2015
).
42.
Shalchi
,
A.
,
Nonlinear Cosmic Ray Diffusion Theories
(
Springer
,
2009
), Vol.
362
.
43.
Shalchi
,
A.
, “
Analytical description of the time-dependent perpendicular transport of energetic particles
,”
Astrophys. J.
864
,
155
(
2018
).
44.
Toptygin
,
I. N.
, “
Acceleration of particles by shocks in a cosmic plasma
,”
Space Sci. Rev.
26
,
157
213
(
1980
).
45.
Walter
,
D.
,
Fichtner
,
H.
, and
Litvinenko
,
Y.
, “
A perturbative approach to a nonlinear advection-diffusion equation of particle transport
,”
Phys. Plasmas
27
,
082901
(
2020
).
46.
Yan
,
H.
,
Lazarian
,
A.
, and
Schlickeiser
,
R.
, “
Cosmic-ray streaming from supernova remnants and gamma-ray emission from nearby molecular clouds
,”
Astrophys. J.
745
,
140
(
2012
).
47.
Zhang
,
M.
, “
Calculation of diffusive shock acceleration of charged particles by skew Brownian motion
,”
Astrophys. J.
541
,
428
435
(
2000
).
48.
Zirakashvili
,
V. N.
, “
Induced scattering and two-photon absorption of Alfvén waves with arbitrary propagation angles
,”
Sov. J. Exp. Theor. Phys.
90
,
810
816
(
2000
).
You do not currently have access to this content.