Hall thrusters are known to exhibit a large variety of instabilities. Their physical mechanisms have been identified at low (kHz) and intermediate (MHz) frequencies, even though they are still not fully understood. Furthermore, electromagnetic radiations generated by Hall thrusters, named “self-emission” of the thruster, have been measured from kHz to MHz as expected from the identified instabilities, but also at higher frequencies. The origin of the high frequency (GHz) self-emission remains for now unknown. Assessing this self-emission, that is important for understanding the physics of Hall thrusters as well as for electromagnetic compatibility issues with the spacecraft, is challenging. Another aspect that makes the understanding of the physics of Hall thrusters complex comes from the eventual coupling between instabilities, which has been recently suggested and observed. The aim of this paper is to explore the possibility of characterizing simultaneously instabilities in Hall thrusters on a broadband frequency range (from kHz to GHz) in situ, meaning in a conventionally used vacuum chamber where Hall thrusters are usually operated. We show in this paper that, despite the reverberant nature of the vacuum metallic chamber, useful information is extracted at low and intermediate frequencies and even at high frequency from the measurements done with an antenna in this environment.

1.
I.
Romadanov
,
Y.
Raitses
, and
A.
Smolyakov
, “
Control of coherent structures via external drive of the breathing mode
,”
Plasma Phys. Rep.
45
,
134
146
(
2019
).
2.
J.-P.
Boeuf
, “
Tutorial: Physics and modeling of Hall thrusters
,”
J. Appl. Phys.
121
,
011101
(
2017
).
3.
S.
Mazouffre
, “
Electric propulsion for satellites and spacecraft: Established technologies and novel approaches
,”
Plasma Sources Sci. Technol.
25
,
033002
(
2016
).
4.
K.
Hara
, “
An overview of discharge plasma modeling for Hall effect thrusters
,”
Plasma Sources Sci. Technol.
28
,
044001
(
2019
).
5.
D. A.
Tomilin
and
I. A.
Khmelevskoi
, “
Influence of kinetic effects on long wavelength gradient-drift instability in high-frequency range in Hall thruster
,”
Phys. Plasmas
27
,
102103
(
2020
).
6.
V. V.
Zhurin
,
H. R.
Kaufman
, and
R. S.
Robinson
, “
Physics of closed drift thrusters
,”
Plasma Sources Sci. Technol.
8
,
R1
R20
(
1999
).
7.
J. P.
Boeuf
and
L.
Garrigues
, “
Low frequency oscillations in a stationary plasma thruster
,”
J. Appl. Phys.
84
,
3541
3554
(
1998
).
8.
S.
Barral
and
E.
Ahedo
, “
Low-frequency model of breathing oscillations in Hall discharges
,”
Phys. Rev. E
79
,
046401
(
2009
).
9.
R.
Kawashima
,
K.
Hara
, and
K.
Komurasaki
, “
Numerical analysis of azimuthal rotating spokes in a crossed-field discharge plasma
,”
Plasma Sources Sci. Technol.
27
,
035010
(
2018
).
10.
E.
Rodríguez
,
V.
Skoutnev
,
Y.
Raitses
,
A.
Powis
,
I.
Kaganovich
, and
A.
Smolyakov
, “
Boundary-induced effect on the spoke-like activity in E×B plasma
,”
Phys. Plasmas
26
,
053503
(
2019
).
11.
A. I.
Morozov
,
Y. V.
Esipchuk
,
A. M.
Kapulkin
,
V. A.
Nevrovskii
, and
V. A.
Smirnov
, “
Effect of the magnetic field a closed-electron-drift accelerator
,”
Sov. Phys.-Tech. Phys.
17
(
3
),
482
487
(
1972
).
12.
S.
Barral
,
K.
Makowski
,
Z.
Peradzyński
, and
M.
Dudeck
, “
Transit-time instability in Hall thrusters
,”
Phys. Plasmas
12
,
073504
(
2005
).
13.
J.
Vaudolon
and
S.
Mazouffre
, “
Investigation of the ion transit time instability in a Hall thruster combining time-resolved LIF spectroscopy and analytical calculations
,” in
51st AIAA/SAE/ASEE Joint Propulsion Conference
(
American Institute of Aeronautics and Astronautics
,
2015
).
14.
S.
Tsikata
,
N.
Lemoine
,
V.
Pisarev
, and
D. M.
Grésillon
, “
Dispersion relations of electron density fluctuations in a Hall thruster plasma, observed by collective light scattering
,”
Phys. Plasmas
16
,
033506
(
2009
).
15.
J. C.
Adam
,
A.
Héron
, and
G.
Laval
, “
Study of stationary plasma thrusters using two-dimensional fully kinetic simulations
,”
Phys. Plasmas
11
,
295
305
(
2004
).
16.
E. Y.
Choueiri
, “
Plasma oscillations in Hall thrusters
,”
Phys. Plasmas
8
,
1411
1426
(
2001
).
17.
E.
Beiting
,
J.
Pollard
,
V.
Khayms
, and
L.
Werthman
, “
Electromagnetic Emission to 60 GHz from a BPT 4000 Edm Hall Thruster
,” in
28th International Electric Propulsion Conference (IEPC-03–129)
Toulouse, France,
2003
.
18.
E.
Beiting
,
M.
Garrett
,
J.
Pollard
, and
B.
Pezet
, “
Spectral characteristics of radiated emission from SPT-100 Hall thrusters
,” in
Proc. 29th International Electric Propulsion Conference, IEPC-2005–221
(
Princeton University
,
2005
).
19.
E. J.
Beiting
,
M. L.
Garrett
,
J. E.
Pollard
,
B.
Pezet
, and
P.
Gouvernayre
, “
Temporal Characteristics of radiated emission from SPT-100 Hall thrusters in the L, S, and C Bands
,” in
29th International Electric Propulsion Conference, IEPC-2005–222
(
Princeton University
,
2005
).
20.
E.
Beiting
,
M.
Garrett
, and
J.
Pollard
, “
Spectral and temporal characteristics of electromagnetic emissions from the BPT-4000 Hall thrusters
,” in
42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
(
American Institute of Aeronautics and Astronautics
,
2006
).
21.
E.
Beiting
,
X. L.
Eapen
,
J.
Pollard
, and
M.
Gambon
, “
Electromagnetic emissions from PPS® 1350 Hall thruster
,” in
IEPC
,
2009
.
22.
E.
Beiting
,
R.
Spektor
, and
X.
Eapen
, “
Time-domain characteristics of 0.2–8 GHz pulsed emission from Hall thrusters
,” in
46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences
(
American Institute of Aeronautics and Astronautics
,
2010
).
23.
K. P.
Kirdyashev
, “
Electomagnetic interference with Hall thruster operation
,” in
Proceedings of the Fourth International Spacecraft Propulsion Conference Cagliari
, Sardinia, Italy (EAS SP-555,
2004
), pp.
307
312
.
24.
K. P.
Kirdyashev
, “
Microwave processes in the SPD-ATON stationary plasma thruster
,”
Plasma Phys. Rep.
42
,
859
869
(
2016
).
25.
I. D.
Kaganovich
,
A.
Smolyakov
,
Y.
Raitses
,
E.
Ahedo
,
I. G.
Mikellides
,
B.
Jorns
,
F.
Taccogna
,
R.
Gueroult
,
S.
Tsikata
,
A.
Bourdon
,
J.-P.
Boeuf
,
M.
Keidar
,
A. T.
Powis
,
M.
Merino
,
M.
Cappelli
,
K.
Hara
,
J. A.
Carlsson
,
N. J.
Fisch
,
P.
Chabert
,
I.
Schweigert
,
T.
Lafleur
,
K.
Matyash
,
A. V.
Khrabrov
,
R. W.
Boswell
, and
A.
Fruchtman
, “
Physics of E × B discharges relevant to plasma propulsion and similar technologies
,”
Phys. Plasmas
27
,
120601
(
2020
).
26.
K.
Matyash
and
R.
Schneider
, “
3D simulation of rotating spoke in a wall-less Hall thruster
,” in
Proceedings of the 36th International Electric Propulsion Conference
, Vienna, Austria,
2019
.
27.
W.
Liqiu
,
H.
Liang
,
Y.
Ziyi
,
L.
Jing
,
C.
Yong
,
Y.
Daren
, and
D.
Jianhua
, “
Modulating action of low frequency oscillations on high frequency instabilities in Hall thrusters
,”
J. Appl. Phys.
117
,
053301
(
2015
).
28.
T.
Charoy
,
T.
Lafleur
,
A. A.
Laguna
,
A.
Bourdon
, and
P.
Chabert
, “
The interaction between ion transit-time and electron drift instabilities and their effect on anomalous electron transport in Hall thrusters
,”
Plasma Sources Sci. Technol.
30
,
065017
(
2021
).
29.
I.
Romadanov
,
Y.
Raitses
, and
A.
Smolyakov
, “
Hall thruster operation with externally driven breathing mode oscillations
,”
Plasma Sources Sci. Technol.
27
,
094006
(
2018
).
30.
A.
Martín Ortega
,
A.
Guglielmi
,
F.
Gaboriau
,
C.
Boniface
, and
J. P.
Boeuf
, “
Experimental characterization of ID-Hall, a double stage Hall thruster with an inductive ionization stage
,”
Phys. Plasmas
27
,
023518
(
2020
).
31.
Y.
Dancheva
,
D.
Pagano
,
S.
Scaranzin
,
R.
Mercatelli
,
M.
Presi
,
F.
Scortecci
, and
G.
Castellini
, “
Non-intrusive tools for electric propulsion diagnostics
,”
CEAS Space J.
14
,
19
30
(
2022
).
32.
V.
Désangles
,
S.
Shcherbanev
,
T.
Charoy
,
N.
Clément
,
C.
Deltel
,
P.
Richard
,
S.
Vincent
,
P.
Chabert
, and
A.
Bourdon
, “
Fast camera analysis of plasma instabilities in Hall effect thrusters using a POD method under different operating regimes
,”
Atmosphere
11
,
518
(
2020
).
33.
M.
McDonald
and
A.
Gallimore
, “
Parametric investigation of the rotating spoke instability in Hall thrusters
,” in
Proceedings of the 32nd International Spacecraft Propulsion Conference (IEPC)
(
Wiesbaden, Germany
,
2011
).
34.
R. B.
Lobbia
and
A. D.
Gallimore
, “
High-speed dual Langmuir probe
,”
Rev. Sci. Instrum.
81
,
073503
(
2010
).
35.
V. I.
Demidov
,
S. V.
Ratynskaia
, and
K.
Rypdal
, “
Electric probes for plasmas: The link between theory and instrument
,”
Rev. Sci. Instrum.
73
,
3409
3439
(
2002
).
36.
A. A.
Litvak
,
Y.
Raitses
, and
N. J.
Fisch
, “
Experimental studies of high-frequency azimuthal waves in Hall thrusters
,”
Phys. Plasmas
11
,
1701
1705
(
2004
).
37.
S.
Tsikata
,
C.
Honoré
,
N.
Lemoine
, and
D. M.
Grésillon
, “
Three-dimensional structure of electron density fluctuations in the Hall thruster plasma: E × B mode
,”
Phys. Plasmas
17
,
112110
(
2010
).
38.
A.
Lazurenko
,
V.
Vial
,
M.
Prioul
, and
A.
Bouchoule
, “
Experimental investigation of high-frequency drifting perturbations in Hall thrusters
,”
Phys. Plasmas
12
,
013501
013501–9
(
2005
).
39.
A.
Lazurenko
,
L.
Albaréde
, and
A.
Bouchoule
, “
Physical characterization of high-frequency instabilities in Hall thrusters
,”
Phys. Plasmas
13
,
083503
(
2006
).
40.
A.
Lazurenko
,
V.
Krasnoselskikh
, and
A.
Bouchoule
, “
Experimental insights into high-frequency instabilities and related anomalous electron transport in Hall thrusters
,”
IEEE Trans. Plasma Sci.
36
,
1977
1988
(
2008
).
41.
A. A.
Litvak
,
Y.
Raitses
, and
N. J.
Fisch
, “
High-frequency probing diagnostic for Hall current plasma thrusters
,”
Rev. Sci. Instrum.
73
,
2882
2885
(
2002
).
42.
M.
Albani
,
F.
Puggelli
,
A.
Toccafondi
,
G.
Meniconi
, and
F.
Scortecci
, “
Modeling and Dielectric Characterization of EMI/EMC Ground Test for the Evaluation of the Electric Propulsion Thruster Emissions
,” in
IEEE International Symposium on Antennas and Propagation
(USNC/URSI National Radio Science Meeting,
2017
), pp.
2599
2600
.
43.
E.
Beiting
, “
Design and performance of a facility to measure electromagnetic emissions from electric satellite thrusters
,” in
37th Joint Propulsion Conference and Exhibit
(
American Institute of Aeronautics and Astronautics
,
Salt Lake City, Utah
,
2001
).
44.
S. V.
Baranov
,
N.
Vazhenin
,
A.
Plokhikh
,
G.
Popov
,
Y. V.
Kochev
,
Y.
Ermoshkin
, and
A. V.
Pervukhin
, “
Determination of electromagnetic emission from electric propulsion thrusters under ground conditions IEPC-2017–167
,” in
35th International Electric Propulsion Conference
(
Georgia Institute of Technology - Atlanta
,
Georgia
,
2017
).
45.
L.
Dubois
,
F.
Gaboriau
,
L.
Liard
,
D.
Harribey
,
C.
Henaux
,
L.
Garrigues
,
G. J. H.
Hagelaar
,
S.
Mazouffre
,
C.
Boniface
, and
J. P.
Boeuf
, “
ID-HALL, a new double stage Hall thruster design. I. Principle and hybrid model of ID-HALL
,”
Phys. Plasmas
25
,
093503
(
2018
).
46.
F.
Diop
,
T.
Gibert
, and
A.
Bouchoule
, “
Argon ionization improvement in a plasma thruster induced by few percent of xenon
,”
Phys. Plasmas
26
,
063508
(
2019
).
47.
D.
Russell
, “
The waveguide below-cutoff attenuation standard
,”
IEEE Trans. Microwave Theory Tech.
45
,
2408
2413
(
1997
).
48.
Note that frequency components around 2.2 GHz, that were not present in the frequency content of the GHz peak plotted on Fig. 2, are found on the temporal average on those GHz peaks in these conditions (discharge voltage of 150V).
49.
N.
Gascon
,
M.
Dudeck
, and
S.
Barral
, “
Wall material effects in stationary plasma thrusters. I. Parametric studies of an SPT-100
,”
Phys. Plasmas
10
,
4123
4136
(
2003
).
50.
L.
Wei
,
C.
Wang
,
C.
Zhang
, and
D.
Yu
, “
Effects of operating parameters on ionization distribution in Hall thrusters
,”
Appl. Phys. Lett.
102
,
173505
(
2013
).
51.
E.
Chesta
,
C. M.
Lam
,
N. B.
Meezan
,
D. P.
Schmidt
, and
M. A.
Cappelli
, “
A characterization of plasma fluctuations within a Hall discharge
,”
IEEE Trans. Plasma Sci.
29
,
582
591
(
2001
).
52.
N.
Gascon
,
C.
Perot
,
S.
Bechu
,
P.
Lasgorceix
,
B.
Izrar
,
M.
Dudeck
,
G.
Bonhomme
, and
X.
Caron
, “
Signal processing and non-linear behavior of a stationary plasma thruster—First results
,” in
35th Joint Propulsion Conference and Exhibit
(
American Institute of Aeronautics and Astronautics
,
1992
).
53.
N. P.
Brown
and
M. L. R.
Walker
, “
Review of plasma-induced Hall thruster erosion
,”
Appl. Sci.
10
,
3775
(
2020
).
54.
D. A.
Hill
,
Electromagnetic Theory of Reverberation Chambers
(
NIST, Boulder, CO
, Tech. Note 1506,
1998
).
55.
K. P.
Kirdyashev
, “
The electromagnetic problems of interplanetary spacecraft communication
,”
J. Phys.: Conf. Ser.
1560
,
012077
(
2020
).
56.
The fact that the frequency component around 100 kHz seems to be of high intensity on this plot whereas it seemed not to be present on the plot below ([0:100] kHz) comes from the change of scale between those plots.

Supplementary Material

You do not currently have access to this content.