We present the results of the research on underwater electrical explosion of planar copper wire arrays, accompanied by the generation of a planar shock, using the synchrotron-based phase-contrast radiography imaging capabilities of the ID19 beamline at the European Synchrotron Radiation Facility. It is shown that the interaction of a strong shock with an air–water interface leads to additional acceleration of the wire expansion due to a rarefaction wave along with the emergence of micro-jets. In the case of a target placed above the array, we observed the formation of a cavity between the array and the target due to the interaction of two rarefaction waves. The results of two-dimensional hydrodynamic simulations of the wire explosion and the interaction of the generated shock with the water–air and water-target interfaces showed good agreement with experimental results.

1.
R. P.
Drake
,
Phys. Plasmas
16
,
055501
(
2009
).
2.
D. B.
Sinars
,
M. A.
Sweeney
,
C. S.
Alexander
,
D. J.
Ampleford
,
T.
Ao
,
J. P.
Apruzese
,
C.
Aragon
,
D. J.
Armstrong
,
K. N.
Austin
,
T. J.
Awe
 et al,
Phys. Plasmas
27
,
070501
(
2020
).
3.
E. I.
Moses
,
J. D.
Lindl
,
M. L.
Spaeth
,
R. W.
Patterson
,
R. H.
Sawicki
,
L. J.
Atherton
,
P. A.
Baisden
,
L. J.
Lagin
,
D. W.
Larson
,
B. J.
MacGowan
 et al,
Fusion Sci. Technol
69
(
1
),
1–24
(
2016
).
4.
Y. E.
Krasik
,
A.
Grinenko
,
A.
Sayapin
,
S.
Efimov
,
A.
Fedotov
,
V. Z.
Gurovich
, and
V. I.
Oreshkin
,
IEEE Trans. Plasma Sci.
36
,
423
(
2008
).
5.
F.
Ren
,
L.
Ge
,
A.
Arami-Niya
,
T. E.
Rufford
,
H.
Xing
, and
V.
Rudolph
,
Int. J. Coal Geol.
208
,
24
(
2019
).
6.
F.
Ren
,
L.
Ge
,
V.
Stelmashuk
,
T. E.
Rufford
,
H.
Xing
, and
V.
Rudolph
,
J. Nat. Gas Sci. Eng.
66
,
255
(
2019
).
7.
H.
Zhou
,
Y.
Zhang
,
H.
Li
,
R.
Han
,
Y.
Jing
,
Q.
Liu
,
J.
Wu
,
Y.
Zhao
, and
A.
Qiu
,
IEEE Trans. Plasma Sci.
43
,
4017
(
2015
).
8.
E.
Zvulun
,
G.
Toker
,
V. T.
Gurovich
, and
Y. E.
Krasik
,
J. Appl. Phys.
115
,
203301
(
2014
).
9.
K.
Patel
,
M.
Shah
, and
A.
Sircar
,
Pet. Res.
3
,
180
(
2018
).
10.
H.
Zhou
,
Y.
Zhang
,
H.
Li
,
R.
Han
,
Y.
Jing
,
Q.
Liu
,
J.
Wu
,
Y.
Zhao
, and
A.
Qiu
,
IEEE Trans. Plasma Sci.
43
,
4009
(
2015
).
11.
H.
Zhou
,
Y.
Zhang
,
H.
Li
,
R.
Han
,
Y.
Jing
,
Q.
Liu
,
J.
Wu
,
Y.
Zhao
, and
A.
Qiu
,
IEEE Trans. Plasma Sci.
43
,
3999
(
2015
).
12.
Y.
Zhang
,
A.
Qiu
,
H.
Zhou
,
Q.
Liu
,
J.
Tang
, and
M.
Liu
,
Gaodianya Jishu/High Voltage Eng.
42
,
1009
(
2016
).
13.
Y. E.
Krasik
,
A.
Grinenko
,
A.
Sayapin
,
V. T.
Gurovich
, and
I.
Schnitzer
,
Phys. Rev. E
73
,
057301
(
2006
).
14.
O.
Antonov
,
S.
Efimov
,
D.
Yanuka
,
M.
Kozlov
,
V. T.
Gurovich
, and
Y. E.
Krasik
,
Appl. Phys. Lett.
102
,
124104
(
2013
).
15.
S.
Efimov
,
V. T.
Gurovich
,
G.
Bazalitski
,
A.
Fedotov
, and
Y. E.
Krasik
,
J. Appl. Phys.
106
,
073308
(
2009
).
16.
A.
Rososhek
,
S.
Efimov
,
A.
Virozub
,
D.
Maler
, and
Y. E.
Krasik
,
Appl. Phys. Lett.
115
,
074101
(
2019
).
17.
A.
Rososhek
,
S.
Efimov
,
A.
Goldman
,
S. V.
Tewari
, and
Y. E.
Krasik
,
Phys. Plasmas
26
,
053510
(
2019
).
18.
D.
Maler
,
A.
Rososhek
,
S.
Efimov
,
A.
Virozub
, and
Y. E.
Krasik
,
J. Appl. Phys.
129
,
034901
(
2021
).
19.
S. P.
Theocharous
,
S. N.
Bland
,
D.
Yanuka
,
A.
Rososhek
,
M. P.
Olbinado
,
A.
Rack
, and
Y. E.
Krasik
,
Rev. Sci. Instrum.
90
,
013504
(
2019
).
20.
D.
Yanuka
,
A.
Rososhek
,
S.
Theocharous
,
S. N.
Bland
,
Y. E.
Krasik
,
M. P.
Olbinado
, and
A.
Rack
,
J. Appl. Phys.
124
,
153301
(
2018
).
21.
D.
Yanuka
,
A.
Rososhek
,
S.
Theocharous
,
S. N.
Bland
,
Y. E.
Krasik
,
M. P.
Olbinado
,
A.
Rack
, and
E. V.
Oreshkin
,
Phys. Plasmas
26
,
050703
(
2019
).
22.
D.
Yanuka
,
S.
Theocharous
,
S.
Efimov
,
S. N.
Bland
,
A.
Rososhek
,
Y. E.
Krasik
,
M. P.
Olbinado
, and
A.
Rack
,
J. Appl. Phys.
125
,
093301
(
2019
).
23.
M. P.
Olbinado
,
X.
Just
,
J.-L.
Gelet
,
P.
Lhuissier
,
M.
Scheel
,
P.
Vagovic
,
T.
Sato
,
R.
Graceffa
,
J.
Schulz
,
A.
Mancuso
,
J.
Morse
, and
A.
Rack
,
Opt. Express
25
,
13857
(
2017
).
24.
M. P.
Olbinado
,
V.
Cantelli
,
O.
Mathon
,
S.
Pascarelli
,
J.
Grenzer
,
A.
Pelka
,
M.
Roedel
,
I.
Prencipe
,
A. L.
Garcia
,
U.
Helbig
 et al,
J. Phys. D
51
,
055601
(
2018
).
25.
J. R.
MacDonald
,
Rev. Mod. Phys.
38
,
669
(
1966
).
26.
D.
Maler
,
S.
Efimov
, and
Y. E.
Krasik
,
J. Appl. Phys.
131
,
074902
(
2022
).
27.
T.
Ao
and
D. H.
Dolan
, “
SIRHEN: A data reduction program for photonic Doppler velocimetry measurements
,”
Report No. SAND2010-3628
(
Sandia National Laboratories
,
Albuquerque
,
NM
,
2010
).
28.
S.
Lyon
and
J.
Johnson
,
Sesame: The Los Alamos National Laboratory Equation of State Database
, Report No. LA-UR-92-3407, 1992.
29.
V.
Fortov
and
I. T.
Iakubov
,
The Physics of Non-Ideal Plasma
(
World Scientific Publishing
,
NJ
,
2000
).
30.
D. D.
Ryutov
,
M. S.
Derzon
, and
M. K.
Matzen
,
Rev. Mod. Phys.
72
,
167
(
2000
).
31.
Y. P.
Raizer
,
Gas Discharge Physics
(
Springer-Verlag
,
Berlin, Germany
,
1991
), pp.
8
20
.
32.
J.
Sugar
and
A.
Musgrove
,
J. Phys. Chem. Ref. Data
19
,
527
(
1990
).
33.
H. R.
Griem
,
Plasma Spectroscopy
(
McGraw-Hill
,
New York
,
1964
), p.
125
.
34.
J. H.
Hubbell
and
S. M.
Seltzer
, “
Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest
.” (Radiation Physics Division, PML, NIST, 1995).
You do not currently have access to this content.