High-density low-temperature plasmas with degenerate species are considered in the limit of high Fermi velocities close to the speed of light. The small amplitude ion-acoustic solitons are studied in this regime. The analysis presented here is based on a relativistic hydrodynamic model with the average reverse gamma factor evolution consisting of the equations for the evolution of the functions such as the concentration, the velocity field, the average reverse relativistic gamma factor, and the flux of the reverse relativistic gamma factor, which are considered as main hydrodynamic variables. Justification of the suggested model via comparison of the hydrodynamic results with the result of application of the relativistic Vlasov kinetic equation is made in the linear approximation.

1.
N. L.
Shatashvili
,
S. M.
Mahajan
, and
V. I.
Berezhiani
, “
Nonlinear coupling of electromagnetic and electron acoustic waves in multi-species degenerate astrophysical plasma
,”
Phys. Plasmas
27
,
012903
(
2020
).
2.
Z. Y.
Liu
,
Y. Z.
Zhang
, and
S. M.
Mahajan
, “
The effect of curvature induced broken potential vorticity conservation on drift wave turbulences
,”
Plasma Phys. Controlled Fusion
63
,
045009
(
2021
).
3.
D.
She
,
A.
Huang
,
D.
Hou
, and
J.
Liao
, “
Relativistic viscous hydrodynamics with angular momentum
,” arXiv:2105.04060 (
2021
).
4.
C.
Bhattacharjee
,
J. C.
Feng
, and
S. M.
Mahajan
, “
Black hole in a superconducting plasma
,”
Phys. Rev. D
99
,
024027
(
2019
).
5.
L.
Comisso
and
F. A.
Asenjo
, “
Generalized magnetofluid connections in curved spacetime
,”
Phys. Rev. D
102
,
023032
(
2020
).
6.
S.
Darbha
,
D.
Kasen
,
F.
Foucart
, and
D. J.
Price
, “
Electromagnetic signatures from the tidal tail of a black hole–neutron star merger
,”
Astrophys. J.
915
,
69
(
2021
).
7.
M.
Chabanov
,
L.
Rezzolla
, and
D. H.
Rischke
, “
General-relativistic hydrodynamics of non-perfect fluids: 3 + 1 conservative formulation and application to viscous black-hole accretion
,”
Mon. Not. R. Astron. Soc.
505
,
5910
(
2021
).
8.
S. M.
Mahajan
, “
The relativistic electro-vortical field–revisiting magneto-genesis and allied problems
,”
Phys. Plasmas
23
,
112104
(
2016
).
9.
S. M.
Mahajan
and
Z.
Yoshida
, “
Relativistic generation of vortex and magnetic field
,”
Phys. Plasmas
18
,
055701
(
2011
).
10.
L.
Comisso
and
F. A.
Asenjo
, “
Thermal-inertial effects on magnetic reconnection in relativistic pair plasmas
,”
Phys. Rev. Lett.
113
,
045001
(
2014
).
11.
J.
Heyvaerts
,
T.
Lehner
, and
F.
Mottez
, “
Non-linear simple relativistic Alfven waves in astrophysical plasmas
,”
Astron. Astrophys.
542
,
A128
(
2012
).
12.
S. M.
Mahajan
, “
Temperature-transformed ‘minimal coupling’: Magnetofluid unification
,”
Phys. Rev. Lett.
90
,
035001
(
2003
).
13.
V.
Munoz
,
T.
Hada
, and
S.
Matsukiyo
, “
Kinetic effects on the parametric decays of Alfven waves in relativistic pair plasmas
,”
Earth Planets Space
58
,
1213
1217
(
2006
).
14.
G.
Brunetti
,
P.
Blasi
,
R.
Cassano
, and
S.
Gabici
, “
Alfvenic reacceleration of relativistic particles in galaxy clusters: MHD waves, leptons and hadrons
,”
Mon. Not. R. Astron. Soc.
350
,
1174
1194
(
2004
).
15.
P. A.
Andreev
, “
On the structure of relativistic hydrodynamics for hot plasmas
,” arXiv:2105.10999 (
2021
).
16.
P. A.
Andreev
, “
Waves propagating parallel to the magnetic field in relativistically hot plasmas: A hydrodynamic models
,” arXiv:2106.14327 (
2021
).
17.
P. A.
Andreev
, “
On a hydrodynamic description of waves propagating perpendicular to the magnetic field in relativistically hot plasmas
,” arXiv:2107.13603 (
2021
).
18.
P. A.
Andreev
, “
A hydrodynamic model of Alfvenic waves and fast magneto-sound in the relativistically hot plasmas at propagation parallel to the magnetic field
,” arXiv:2108.12721 (
2021
).
19.
P. A.
Andreev
, “
Microscopic model for relativistic hydrodynamics of ideal plasmas
,” arXiv:2109.14050 (
2021
).
20.
P. A.
Andreev
, “
Anisotropic pressure effects in hydrodynamic description of waves propagating parallel to the magnetic field in relativistically hot plasmas
,” arXiv:2110.14749 (
2021
).
21.
L. S.
Kuz'menkov
, “
Field form of dynamics and statistics of systems of particles with electromagnetic interaction
,”
Theor. Math. Phys.
86
,
159
(
1991
).
22.
M. A.
Drofa
and
L. S.
Kuz'menkov
, “
Continual approach to multiparticle systems with long-range interaction. Hierarchy of macroscopic fields and physical consequences
,”
Theor. Math. Phys.
108
,
849
(
1996
).
23.
L. S.
Kuz'menkov
and
P. A.
Andreev
, “
Microscopic classic hydrodynamic and methods of averaging
,” in
PIERS Proceedings, Moscow, Russia
(
The Electromagnetics Academy
,
2012
), p.
158
.
24.
A.
Schmitt
, “
Dense matter in compact stars: A pedagogical introduction
,” in
Lecture Notes in Physics
(
Springer
,
Berlin, Heidelberg
,
2010
), Vol.
811
.
25.
F. A.
Asenjo
,
L.
Comisso
, and
S. M.
Mahajan
, “
Generalized magnetofluid connections in pair plasmas
,”
Phys. Plasmas
22
,
122109
(
2015
).
26.
S.
Koide
, “
Generalized general relativistic magnetohydrodynamic equations and distinctive plasma dynamics around rotating black holes
,”
Astrophys. J.
708
,
1459
(
2010
).
27.
P. A.
Andreev
, “
Nonlinear coupling of electromagnetic and spin-electron-acoustic waves in spin-polarized degenerate relativistic astrophysical plasma
,” arXiv:2202.11814 (
2022
).
28.
I.
Tokatly
and
O.
Pankratov
, “
Hydrodynamic theory of an electron gas
,”
Phys. Rev. B
60
,
15550
(
1999
).
29.
I. V.
Tokatly
and
O.
Pankratov
, “
Hydrodynamics beyond local equilibrium: Application to electron gas
,”
Phys. Rev. B
62
,
2759
(
2000
).
30.
P. A.
Andreev
, “
Hydrodynamics of quantum corrections to the Coulomb interaction via the third rank tensor evolution equation: Application to Langmuir waves and spin-electron acoustic waves
,”
J. Plasma Phys.
87
,
905870511
(
2021
).
31.
Z.
Iqbal
and
P. A.
Andreev
, “
Nonlinear separate spin evolution in degenerate electron-positron-ion plasmas
,”
Phys. Plasmas
23
,
062320
(
2016
).
You do not currently have access to this content.