The potential for laser-produced plasmas to yield fundamental insights into high energy density physics (HEDP) and deliver other useful applications can sometimes be frustrated by uncertainties in modeling the properties and behavior of these plasmas using radiation-hydrodynamics codes. In an effort to overcome this and to corroborate the accuracy of the HEDP capabilities in the publicly available FLASH radiation-hydrodynamics code, we present detailed code-to-code comparisons between FLASH and the HYDRA code developed at Lawrence Livermore National Laboratory using previously published HYDRA simulations from Grava et al. [Phys. Rev. E 78, 016403 (2008)]. That study describes a laser experiment that produced a jet-like feature that the authors compare to astrophysical jets. Importantly, the Grava et al. [Phys. Rev. E 78, 016403 (2008)] experiment included detailed x-ray interferometric measurements of electron number densities and a time-integrated measurement of the soft x-ray spectrum. Despite markedly different methods for treating the computational mesh, and different equations of state and opacity models, the FLASH results resemble the results from HYDRA and, most importantly, the experimental measurements of electron density. Having validated the FLASH code in this way, we use the code to further investigate and understand the formation of the jet seen in the Grava et al. [Phys. Rev. E 78, 016403 (2008)] experiment and discuss its relation to the Wan et al. [Phys. Rev. E 55, 6293 (1997)] experiment at the NOVA laser.

1.
We use the term three-temperature (or “3T”) to denote the approximation that electrons and ions move together as a single fluid but with two different temperatures, and that this fluid can emit or absorb radiation. In the 3T simulations presented in this paper, each cell has an electron temperature, an ion temperature, and radiation energy densities in a number of photon energy bins.
2.
K. U.
Akli
,
C.
Orban
,
D.
Schumacher
,
M.
Storm
,
M.
Fatenejad
,
D.
Lamb
, and
R. R.
Freeman
,
Phys. Rev. E
86
,
065402
(
2012
).
3.
T. R.
Boehly
,
D. L.
Brown
,
R. S.
Craxton
,
R. L.
Keck
,
J. P.
Knauer
,
J. H.
Kelly
,
T. J.
Kessler
,
S. A.
Kumpan
,
S. J.
Loucks
,
S. A.
Letzring
 et al.,
Opt. Commun.
133
,
495
(
1997
).
4.
E. I.
Moses
,
R. N.
Boyd
,
B. A.
Remington
,
C. J.
Keane
, and
R.
Al-Ayat
,
Phys. Plasmas
16
,
041006
(
2009
).
5.
J. D.
Lindl
,
L. J.
Atherton
,
P. A.
Amednt
,
S.
Batha
,
P.
Bell
,
R. L.
Berger
,
R.
Betti
,
D. L.
Bleuel
,
T. R.
Boehly
,
D. K.
Bradley
 et al.,
Nucl. Fusion
51
,
094024
(
2011
).
6.
M. D.
Rosen
,
H. A.
Scott
,
D. E.
Hinkel
,
E. A.
Williams
,
D. A.
Callahan
,
R. P. J.
Town
,
L.
Divol
,
P. A.
Michel
,
W. L.
Kruer
,
L. J.
Suter
 et al.,
High Energy Density Phys.
7
,
180
(
2011
).
7.
D.
Lamb
and
M.
Marinak
, “
Panel report on integrated modeling, workshop on science of fusion ignition on NIF
,”
Report No. LLNL-TR-570412
,
2012
.
8.
C.
Bellei
,
P. A.
Amendt
,
S. C.
Wilks
,
M. G.
Haines
,
D. T.
Casey
,
C. K.
Li
,
R.
Petrasso
, and
D. R.
Welch
,
Phys. Plasmas
20
,
012701
(
2013
).
9.
V. A.
Thomas
and
R. J.
Kares
,
Phys. Rev. Lett.
109
,
075004
(
2012
).
10.
M. M.
Marinak
,
R. E.
Tipton
,
O. L.
Landen
,
T. J.
Murphy
,
P.
Amendt
,
S. W.
Haan
,
S. P.
Hatchett
,
C. J.
Keane
,
R.
McEachern
, and
R.
Wallace
,
Phys. Plasmas
3
,
2070
(
1996
).
11.
M. M.
Marinak
,
S. W.
Haan
,
T. R.
Dittrich
,
R. E.
Tipton
, and
G. B.
Zimmerman
,
Phys. Plasmas
5
,
1125
(
1998
).
12.
M. M.
Marinak
,
G. D.
Kerbel
,
N. A.
Gentile
,
O.
Jones
,
D.
Munro
,
S.
Pollaine
,
T. R.
Dittrich
, and
S. W.
Haan
,
Phys. Plasmas
8
,
2275
(
2001
).
13.
E. C.
Harding
,
J. F.
Hansen
,
O. A.
Hurricane
,
R. P.
Drake
,
H. F.
Robey
,
C. C.
Kuranz
,
B. A.
Remington
,
M. J.
Bono
,
M. J.
Grosskopf
, and
R. S.
Gillespie
,
Phys. Rev. Lett.
103
,
045005
(
2009
).
14.
B.
van der Holst
,
G.
Tóth
,
I.
Sokolov
,
L.
Daldorff
,
K.
Powell
, and
R.
Drake
,
High Energy Density Phys.
8
,
161
(
2012
).
15.
J. M.
Taccetti
,
P. A.
Keiter
,
N.
Lanier
,
K.
Mussack
,
K.
Belle
, and
G. R.
Magelssen
,
Rev. Sci. Instrum.
83
,
023506
(
2012
).
16.
DOE
, “
Basic research directions for user science at the National Ignition Facility
,”
Technical Report (US Department of Energy
,
2011
).
17.
P. A.
Keiter
,
K.
Mussack
, and
S. R.
Klein
,
High Energy Density Phys.
9
,
319
(
2013
).
18.
B.
Fryxell
,
K.
Olson
,
P.
Ricker
,
F. X.
Timmes
,
M.
Zingale
,
D. Q.
Lamb
,
P.
MacNeice
,
R.
Rosner
,
J. W.
Truran
, and
H.
Tufo
,
Astrophys. J., Suppl. Ser.
131
,
273
(
2000
).
19.
A.
Dubey
,
L. B.
Reid
,
K.
Weide
,
K.
Antypas
,
M. K.
Ganapathy
,
K.
Riley
,
D.
Sheeler
, and
A.
Siegal
, arXiv:0903.4875 (
2009
).
20.
P.
Tzeferacos
,
M.
Fatenejad
,
N.
Flocke
,
C.
Graziani
,
G.
Gregori
,
D.
Lamb
,
D.
Lee
,
J.
Meinecke
,
A.
Scopatz
, and
K.
Weide
,
High Energy Density Phys.
17
,
24
(
2015
).
21.
J.
Grava
,
M. A.
Purvis
,
J.
Filevich
,
M. C.
Marconi
,
J. J.
Rocca
,
J.
Dunn
,
S. J.
Moon
, and
V. N.
Shlyaptsev
,
Phys. Rev. E
78
,
016403
(
2008
).
22.
P.
MacNeice
,
K. M.
Olson
,
C.
Mobarry
,
R.
de Fainchtein
, and
C.
Packer
,
Comput. Phys. Commun.
126
,
330
(
2000
).
23.
C. W.
Hirt
,
A. A.
Amsden
, and
J. L.
Cook
,
J. Comput. Phys.
14
,
227
(
1974
).
24.
J. I.
Castor
,
Radiation Hydrodynamics
(
Cambridge University Press
,
2004
).
25.
M.
Kucharik
, Ph. D. thesis,
Czech Technical University in Prague
,
2006
.
26.
A. S.
Wan
,
T. W.
Barbee
,
R.
Cauble
,
P.
Celliers
,
L. B.
Da Silva
,
J. C.
Moreno
,
P. W.
Rambo
,
G. F.
Stone
,
J. E.
Trebes
, and
F.
Weber
,
Phys. Rev. E
55
,
6293
(
1997
).
27.
J. M.
Stone
,
N.
Turner
,
K.
Estabrook
,
B.
Remington
,
D.
Farley
,
S. G.
Glendinning
, and
S.
Glenzer
,
Astophys. J., Suppl. Ser.
127
,
497
(
2000
).
28.
The Flash Center for Computational Science
,
User Guide Version-4.0-beta
(
The Flash Center for Computational Science
,
2012
).
29.
Y. T.
Lee
and
R. M.
More
,
Phys. Fluids
27
,
1273
(
1984
).
30.
See http://flash.uchicago.edu/site/flashcode/user_support/ for “
Flash code user guides
.”
31.
J. J.
Macfarlane
,
I. E.
Golovkin
, and
P. R.
Woodruff
,
J. Quant. Spectrosc. Radiat. Transfer
99
,
381
(
2006
).
32.
R. M.
More
,
K. H.
Warren
,
D. A.
Young
, and
G. B.
Zimmerman
,
Phys. Fluids
31
,
3059
(
1988
).
33.
M. J.
Seaton
,
Y.
Yan
,
D.
Mihalas
, and
A. K.
Pradhan
,
Mon. Not. R. Astron. Soc.
266
,
805
(
1994
).
34.
C.
Mendoza
,
M. J.
Seaton
,
P.
Buerger
,
A.
Bellorín
,
M.
Meléndez
,
J.
González
,
L. S.
Rodríguez
,
F.
Delahaye
,
E.
Palacios
,
A. K.
Pradhan
 et al.,
Mon. Not. R. Astron. Soc.
378
,
1031
(
2007
).
35.
T. B.
Kaiser
,
Phys. Rev. E
61
,
895
(
2000
).
36.
V. D.
Shafranov
,
Sov. Phys. JETP
5
,
1183
(
1957
).
37.
D.
Mihalas
and
B. W.
Mihalas
,
Foundations of Radiation Hydrodynamics
(
Dover Publishing
,
Mineola, NY
,
1984
).
38.
M.
Fatenejad
,
C.
Fryer
,
B.
Fryxell
,
D.
Lamb
,
E.
Myra
, and
J.
Wohlbier
, in
APS Meeting Abstracts
,
2011
.
39.
J.
Filevich
,
M.
Purvis
,
J.
Grava
,
D. P.
Ryan
,
J.
Dunn
,
S. J.
Moon
,
V. N.
Shlyaptsev
, and
J. J.
Rocca
,
High Energy Density Phys.
5
,
276
(
2009
).
40.
M. A.
Purvis
,
J.
Grava
,
J.
Filevich
,
D. P.
Ryan
,
S. J.
Moon
,
J.
Dunn
,
V. N.
Shlyaptsev
, and
J. J.
Rocca
,
Phys. Rev. E
81
,
036408
(
2010
).
41.
G. B.
Zimmerman
and
W. L.
Kruer
,
Comments Plasma Phys. Controlled Fusion
2
,
51
(
1975
).
42.
L.
Gao
,
E.
Liang
,
Y.
Lu
,
R. K.
Follet
,
H.
Sio
,
P.
Tzeferacos
,
D. H.
Froula
,
A.
Birkel
,
C. K.
Li
,
D.
Lamb
 et al.,
Astrophys. J.
873
,
L11
(
2019
).
43.
J. M.
Stone
and
M. L.
Norman
,
Astrophys. J.
413
,
198
(
1993
).
You do not currently have access to this content.