We report on progress in the understanding of the effects of kilotesla-level applied magnetic fields on relativistic laser–plasma interactions. Ongoing advances in magnetic-field–generation techniques enable new and highly desirable phenomena, including magnetic-field–amplification platforms with reversible sign, focusing ion acceleration, and bulk-relativistic plasma heating. Building on recent advancements in laser–plasma interactions with applied magnetic fields, we introduce simple models for evaluating the effects of applied magnetic fields in magnetic-field amplification, sheath-based ion acceleration, and direct laser acceleration. These models indicate the feasibility of observing beneficial magnetic-field effects under experimentally relevant conditions and offer a starting point for future experimental design.

1.
S.
Fujioka
,
Z.
Zhang
,
K.
Ishihara
,
K.
Shigemori
,
Y.
Hironaka
,
T.
Johzaki
,
A.
Sunahara
,
N.
Yamamoto
,
H.
Nakashima
,
T.
Watanabe
 et al., “
Kilotesla magnetic field due to a capacitor-coil target driven by high power laser
,”
Sci. Rep.
3
,
1170
(
2013
).
2.
J. J.
Santos
,
M.
Bailly-Grandvaux
,
L.
Giuffrida
,
P.
Forestier-Colleoni
,
S.
Fujioka
,
Z.
Zhang
,
P.
Korneev
,
R.
Bouillaud
,
S.
Dorard
,
D.
Batani
,
M.
Chevrot
,
J. E.
Cross
,
R.
Crowston
,
J.-L.
Dubois
,
J.
Gazave
,
G.
Gregori
,
E.
d'Humières
,
S.
Hulin
,
K.
Ishihara
,
S.
Kojima
,
E.
Loyez
,
J.-R.
Marquès
,
A.
Morace
,
P.
Nicolaï
,
O.
Peyrusse
,
A.
Poyé
,
D.
Raffestin
,
J.
Ribolzi
,
M.
Roth
,
G.
Schaumann
,
F.
Serres
,
V. T.
Tikhonchuk
,
P.
Vacar
, and
N.
Woolsey
, “
Laser-driven platform for generation and characterization of strong quasi-static magnetic fields
,”
New J. Phys.
17
,
083051
(
2015
).
3.
L.
Gao
,
H.
Ji
,
G.
Fiksel
,
W.
Fox
,
M.
Evans
, and
N.
Alfonso
, “
Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current
,”
Phys. Plasmas
23
,
043106
(
2016
).
4.
C.
Goyon
,
B. B.
Pollock
,
D. P.
Turnbull
,
A.
Hazi
,
L.
Divol
,
W. A.
Farmer
,
D.
Haberberger
,
J.
Javedani
,
A. J.
Johnson
,
A.
Kemp
,
M. C.
Levy
,
B. G.
Logan
,
D. A.
Mariscal
,
O. L.
Landen
,
S.
Patankar
,
J. S.
Ross
,
A. M.
Rubenchik
,
G. F.
Swadling
,
G. J.
Williams
,
S.
Fujioka
,
K. F. F.
Law
, and
J. D.
Moody
, “
Ultrafast probing of magnetic field growth inside a laser-driven solenoid
,”
Phys. Rev. E
95
,
033208
(
2017
).
5.
V. V.
Ivanov
,
A. V.
Maximov
,
K. J.
Swanson
,
N. L.
Wong
,
G. S.
Sarkisov
,
P. P.
Wiewior
,
A. L.
Astanovitskiy
, and
A. M.
Covington
, “
Experimental platform for investigations of high-intensity laser plasma interactions in the magnetic field of a pulsed power generator
,”
Rev. Sci. Instrum.
89
,
033504
(
2018
).
6.
G.
Fiksel
,
A.
Agliata
,
D.
Barnak
,
G.
Brent
,
P.-Y.
Chang
,
L.
Folnsbee
,
G.
Gates
,
D.
Hasset
,
D.
Lonobile
,
J.
Magoon
,
D.
Mastrosimone
,
M. J.
Shoup
, and
R.
Betti
, “
Note: Experimental platform for magnetized high-energy-density plasma studies at the omega laser facility
,”
Rev. Sci. Instrum.
86
,
016105
(
2015
).
7.
A.
Arefiev
,
T.
Toncian
, and
G.
Fiksel
, “
Enhanced proton acceleration in an applied longitudinal magnetic field
,”
New J. Phys.
18
,
105011
(
2016
).
8.
D. K.
Kuri
,
N.
Das
, and
K.
Patel
, “
Collimated proton beams from magnetized near-critical plasmas
,”
Laser Part. Beams
36
,
276
(
2018
).
9.
H.
Cheng
,
L. H.
Cao
,
J. X.
Gong
,
R.
Xie
,
C. Y.
Zheng
, and
Z. J.
Liu
, “
Improvement of ion acceleration in radiation pressure acceleration regime by using an external strong magnetic field
,”
Laser Part. Beams
37
,
217
(
2019
).
10.
K.
Weichman
,
J. J.
Santos
,
S.
Fujioka
,
T.
Toncian
, and
A. V.
Arefiev
, “
Generation of focusing ion beams by magnetized electron sheath acceleration
,”
Sci. Rep.
10
,
18966
(
2020
).
11.
D. J.
Strozzi
,
M.
Tabak
,
D. J.
Larson
,
L.
Divol
,
A. J.
Kemp
,
C.
Bellei
,
M. M.
Marinak
, and
M. H.
Key
, “
Fast-ignition transport studies: Realistic electron source, integrated particle-in-cell and hydrodynamic modeling, imposed magnetic fields
,”
Phys. Plasmas
19
,
072711
(
2012
).
12.
S.
Fujioka
,
Y.
Arikawa
,
S.
Kojima
,
T.
Johzaki
,
H.
Nagatomo
,
H.
Sawada
,
S. H.
Lee
,
T.
Shiroto
,
N.
Ohnishi
,
A.
Morace
,
X.
Vaisseau
,
S.
Sakata
,
Y.
Abe
,
K.
Matsuo
,
K. F.
Farley Law
,
S.
Tosaki
,
A.
Yogo
,
K.
Shigemori
,
Y.
Hironaka
,
Z.
Zhang
,
A.
Sunahara
,
T.
Ozaki
,
H.
Sakagami
,
K.
Mima
,
Y.
Fujimoto
,
K.
Yamanoi
,
T.
Norimatsu
,
S.
Tokita
,
Y.
Nakata
,
J.
Kawanaka
,
T.
Jitsuno
,
N.
Miyanaga
,
M.
Nakai
,
H.
Nishimura
,
H.
Shiraga
,
K.
Kondo
,
M.
Bailly-Grandvaux
,
C.
Bellei
,
J. J.
Santos
, and
H.
Azechi
, “
Fast ignition realization experiment with high-contrast kilo-joule peta-watt LFEX laser and strong external magnetic field
,”
Phys. Plasmas
23
,
056308
(
2016
).
13.
S.
Sakata
,
S.
Lee
,
H.
Morita
,
T.
Johzaki
,
H.
Sawada
,
Y.
Iwasa
,
K.
Matsuo
,
K. F. F.
Law
,
A.
Yao
,
M.
Hata
 et al., “
Magnetized fast isochoric laser heating for efficient creation of ultra-high-energy-density states
,”
Nat. Commun.
9
,
3937
(
2018
).
14.
C. M.
Huntington
,
F.
Fiuza
,
J. S.
Ross
,
A. B.
Zylstra
,
R. P.
Drake
,
D. H.
Froula
,
G.
Gregori
,
N. L.
Kugland
,
C. C.
Kuranz
,
M. C.
Levy
,
C. K.
Li
,
J.
Meinecke
,
T.
Morita
,
R.
Petrasso
,
C.
Plechaty
,
B. A.
Remington
,
D. D.
Ryutov
,
Y.
Sakawa
,
A.
Spitkovsky
,
H.
Takabe
, and
H.-S.
Park
, “
Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows
,”
Nat. Phys.
11
,
173
(
2015
).
15.
G.
Fiksel
,
W.
Fox
,
A.
Bhattacharjee
,
D. H.
Barnak
,
P.-Y.
Chang
,
K.
Germaschewski
,
S. X.
Hu
, and
P. M.
Nilson
, “
Magnetic reconnection between colliding magnetized laser-produced plasma plumes
,”
Phys. Rev. Lett.
113
,
105003
(
2014
).
16.
S. V.
Bulanov
,
T. Z.
Esirkepov
,
M.
Kando
,
J.
Koga
,
K.
Kondo
, and
G.
Korn
, “
On the problems of relativistic laboratory astrophysics and fundamental physics with super powerful lasers
,”
Plasma Phys. Rep.
41
(
1
),
1–51
(
2015
).
17.
B.
Albertazzi
,
A.
Ciardi
,
M.
Nakatsutsumi
,
T.
Vinci
,
J.
Béard
,
R.
Bonito
,
J.
Billette
,
M.
Borghesi
,
Z.
Burkley
,
S. N.
Chen
,
T. E.
Cowan
,
T.
Herrmannsdörfer
,
D. P.
Higginson
,
F.
Kroll
,
S. A.
Pikuz
,
K.
Naughton
,
L.
Romagnani
,
C.
Riconda
,
G.
Revet
,
R.
Riquier
,
H.-P.
Schlenvoigt
,
I. Y.
Skobelev
,
A.
Faenov
,
A.
Soloviev
,
M.
Huarte-Espinosa
,
A.
Frank
,
O.
Portugall
,
H.
Pépin
, and
J.
Fuchs
, “
Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field
,”
Science
346
,
325
(
2014
).
18.
O. V.
Gotchev
,
P. Y.
Chang
,
J. P.
Knauer
,
D. D.
Meyerhofer
,
O.
Polomarov
,
J.
Frenje
,
C. K.
Li
,
M. J.-E.
Manuel
,
R. D.
Petrasso
,
J. R.
Rygg
,
F. H.
Séguin
, and
R.
Betti
, “
Laser-driven magnetic-flux compression in high-energy-density plasmas
,”
Phys. Rev. Lett.
103
,
215004
(
2009
).
19.
M.
Hohenberger
,
P.-Y.
Chang
,
G.
Fiksel
,
J. P.
Knauer
,
R.
Betti
,
F. J.
Marshall
,
D. D.
Meyerhofer
,
F. H.
Séguin
, and
R. D.
Petrasso
, “
Inertial confinement fusion implosions with imposed magnetic field compression using the omega laser
,”
Phys. Plasmas
19
,
056306
(
2012
).
20.
Y.
Shi
,
K.
Weichman
,
R. J.
Kingham
, and
A. V.
Arefiev
, “
Magnetic field generation in a laser-irradiated thin collisionless plasma target by return current electrons carrying orbital angular momentum
,”
New J. Phys.
22
,
073067
(
2020
).
21.
K.
Weichman
,
A. P. L.
Robinson
,
M.
Murakami
, and
A. V.
Arefiev
, “
Strong surface magnetic field generation in relativistic short pulse laser–plasma interaction with an applied seed magnetic field
,”
New J. Phys.
22
,
113009
(
2020
).
22.
M.
Murakami
,
J. J.
Honrubia
,
K.
Weichman
,
A. V.
Arefiev
, and
S. V.
Bulanov
, “
Generation of megatesla magnetic fields by intense-laser-driven microtube implosions
,”
Sci. Rep.
10
,
16653
(
2020
).
23.
P.
Korneev
,
E.
d'Humières
, and
V.
Tikhonchuk
, “
Gigagauss-scale quasistatic magnetic field generation in a snail-shaped target
,”
Phys. Rev. E
91
,
043107
(
2015
).
24.
P.
Korneev
,
V.
Tikhonchuk
, and
E.
d'Humières
, “
Magnetization of laser-produced plasma in a chiral hollow target
,”
New J. Phys.
19
,
033023
(
2017
).
25.
T.
Johzaki
,
T.
Taguchi
,
Y.
Sentoku
,
A.
Sunahara
,
H.
Nagatomo
,
H.
Sakagami
,
K.
Mima
,
S.
Fujioka
, and
H.
Shiraga
, “
Control of an electron beam using strong magnetic field for efficient core heating in fast ignition
,”
Nucl. Fusion
55
,
053022
(
2015
).
26.
M.
Bailly-Grandvaux
,
J.
Santos
,
C.
Bellei
,
P.
Forestier-Colleoni
,
S.
Fujioka
,
L.
Giuffrida
,
J.
Honrubia
,
D.
Batani
,
R.
Bouillaud
,
M.
Chevrot
 et al., “
Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields
,”
Nat. Commun.
9
,
102
(
2018
).
27.
A. V.
Arefiev
,
A. P. L.
Robinson
, and
V. N.
Khudik
, “
Novel aspects of direct laser acceleration of relativistic electrons
,”
J. Plasma Phys.
81
,
475810404
(
2015
).
28.
A. P. L.
Robinson
and
A. V.
Arefiev
, “
Net energy gain in direct laser acceleration due to enhanced dephasing induced by an applied magnetic field
,”
Phys. Plasmas
27
,
023110
(
2020
).
29.
A.
Arefiev
,
Z.
Gong
, and
A. P. L.
Robinson
, “
Energy gain by laser-accelerated electrons in a strong magnetic field
,”
Phys. Rev. E
101
,
043201
(
2020
).
30.
K.
Weichman
,
J. P.
Palastro
,
A. P. L.
Robinson
, and
A. V.
Arefiev
, “
Underdense relativistically thermal plasma produced by magnetically assisted direct laser acceleration
,” arXiv:2202.07015 (
2022
).
31.
Z. M.
Sheng
and
J.
Meyer-ter Vehn
, “
Inverse faraday effect and propagation of circularly polarized intense laser beams in plasmas
,”
Phys. Rev. E
54
,
1833
(
1996
).
32.
S.
Ali
,
J. R.
Davies
, and
J. T.
Mendonca
, “
Inverse faraday effect with linearly polarized laser pulses
,”
Phys. Rev. Lett.
105
,
035001
(
2010
).
33.
K.
Weichman
,
M.
Murakami
,
A. P. L.
Robinson
, and
A. V.
Arefiev
, “
Sign reversal in magnetic field amplification by relativistic laser-driven microtube implosions
,”
Appl. Phys. Lett.
117
,
244101
(
2020
).
34.
Y.-J.
Gu
and
M.
Murakami
, “
Magnetic field amplification driven by the gyro motion of charged particles
,”
Sci. Rep.
11
,
23592
(
2021
).
35.
V. V.
Ivanov
,
A. V.
Maximov
,
R.
Betti
,
L. S.
Leal
,
R. C.
Mancini
,
K. J.
Swanson
,
I. E.
Golovkin
,
C. J.
Fontes
,
H.
Sawada
,
A. B.
Sefkow
, and
N. L.
Wong
, “
Study of laser produced plasma in a longitudinal magnetic field
,”
Phys. Plasmas
26
,
062707
(
2019
).
36.
L. S.
Leal
,
A. V.
Maximov
,
R.
Betti
,
A. B.
Sefkow
, and
V. V.
Ivanov
, “
Modeling magnetic confinement of laser-generated plasma in cylindrical geometry leading to disk-shaped structures
,”
Phys. Plasmas
27
,
022116
(
2020
).
37.
S. C.
Wilks
,
A. B.
Langdon
,
T. E.
Cowan
,
M.
Roth
,
M.
Singh
,
S.
Hatchett
,
M. H.
Key
,
D.
Pennington
,
A.
MacKinnon
, and
R. A.
Snavely
, “
Energetic proton generation in ultra-intense laser-solid interactions
,”
Phys. Plasmas
8
,
542
(
2001
).
38.
J. J.
Santos
,
M.
Bailly-Grandvaux
,
M.
Ehret
,
A. V.
Arefiev
,
D.
Batani
,
F. N.
Beg
,
A.
Calisti
,
S.
Ferri
,
R.
Florido
,
P.
Forestier-Colleoni
,
S.
Fujioka
,
M. A.
Gigosos
,
L.
Giuffrida
,
L.
Gremillet
,
J. J.
Honrubia
,
S.
Kojima
,
P.
Korneev
,
K. F. F.
Law
,
J.-R.
Marquès
,
A.
Morace
,
C.
Mossé
,
O.
Peyrusse
,
S.
Rose
,
M.
Roth
,
S.
Sakata
,
G.
Schaumann
,
F.
Suzuki-Vidal
,
V. T.
Tikhonchuk
,
T.
Toncian
,
N.
Woolsey
, and
Z.
Zhang
, “
Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics
,”
Phys. Plasmas
25
,
056705
(
2018
).
39.
H.
Ruhl
,
S. V.
Bulanov
,
T. E.
Cowan
,
T. V.
Liseĭkina
,
P.
Nickles
,
F.
Pegoraro
,
M.
Roth
, and
W.
Sandner
, “
Computer simulation of the three-dimensional regime of proton acceleration in the interaction of laser radiation with a thin spherical target
,”
Plasma Phys. Rep.
27
,
363
(
2001
).
40.
R. A.
Snavely
,
B.
Zhang
,
K.
Akli
,
Z.
Chen
,
R. R.
Freeman
,
P.
Gu
,
S. P.
Hatchett
,
D.
Hey
,
J.
Hill
,
M. H.
Key
,
Y.
Izawa
,
J.
King
,
Y.
Kitagawa
,
R.
Kodama
,
A. B.
Langdon
,
B. F.
Lasinski
,
A.
Lei
,
A. J.
MacKinnon
,
P.
Patel
,
R.
Stephens
,
M.
Tampo
,
K. A.
Tanaka
,
R.
Town
,
Y.
Toyama
,
T.
Tsutsumi
,
S. C.
Wilks
,
T.
Yabuuchi
, and
J.
Zheng
, “
Laser generated proton beam focusing and high temperature isochoric heating of solid matter
,”
Phys. Plasmas
14
,
092703
(
2007
).
41.
T.
Bartal
,
M. E.
Foord
,
C.
Bellei
,
M. H.
Key
,
K. A.
Flippo
,
S. A.
Gaillard
,
D. T.
Offermann
,
P. K.
Patel
,
L. C.
Jarrott
,
D. P.
Higginson
,
M.
Roth
,
A.
Otten
,
D.
Kraus
,
R. B.
Stephens
,
H. S.
McLean
,
E. M.
Giraldez
,
M. S.
Wei
,
D. C.
Gautier
, and
F. N.
Beg
, “
Focusing of short-pulse high-intensity laser-accelerated proton beams
,”
Nat. Phys.
8
,
139
(
2012
).
42.
T.
Tajima
and
J. M.
Dawson
, “
Laser electron accelerator
,”
Phys. Rev. Lett.
43
,
267
(
1979
).
43.
E.
Esarey
,
C. B.
Schroeder
, and
W. P.
Leemans
, “
Physics of laser-driven plasma-based electron accelerators
,”
Rev. Mod. Phys.
81
,
1229
(
2009
).
44.
G.
Li
,
R.
Yan
,
C.
Ren
,
T.-L.
Wang
,
J.
Tonge
, and
W. B.
Mori
, “
Laser channeling in millimeter-scale underdense plasmas of fast-ignition targets
,”
Phys. Rev. Lett.
100
,
125002
(
2008
).
45.
M. A.
Purvis
,
V. N.
Shlyaptsev
,
R.
Hollinger
,
C.
Bargsten
,
A.
Pukhov
,
A.
Prieto
,
Y.
Wang
,
B. M.
Luther
,
L.
Yin
,
S.
Wang
 et al., “
Relativistic plasma nanophotonics for ultrahigh energy density physics
,”
Nat. Photonics
7
,
796
(
2013
).
46.
S. M.
Weng
,
M.
Liu
,
Z. M.
Sheng
,
M.
Murakami
,
M.
Chen
,
L. L.
Yu
, and
J.
Zhang
, “
Dense blocks of energetic ions driven by multi-Petawatt lasers
,”
Sci. Rep.
6
,
22150
(
2016
).
47.
J.
Bergman
and
B.
Eliasson
, “
Linear wave dispersion laws in unmagnetized relativistic plasma: Analytical and numerical results
,”
Phys. Plasmas
8
,
1482
(
2001
).
48.
R.
Blandford
and
D.
Eichler
, “
Particle acceleration at astrophysical shocks: A theory of cosmic ray origin
,”
Phys. Rep.
154
(
1
),
1
(
1987
).
49.
R.
Bingham
,
B. J.
Kellett
,
R. A.
Cairns
,
J.
Tonge
, and
J. T.
Mendonca
, “
Cyclotron maser radiation from astrophysical shocks
,”
Astrophys. J.
595
,
279
(
2003
).
50.
B. D.
Metzger
,
B.
Margalit
, and
L.
Sironi
, “
Fast radio bursts as synchrotron maser emission from decelerating relativistic blast waves
,”
Mon. Not. R. Astron. Soc.
485
,
4091
(
2019
).
51.
P.
Kumar
and
B.
Zhang
, “
The physics of gamma-ray bursts & relativistic jets
,”
Phys. Rep.
561
,
1–109
(
2015
).
52.
M.
Lontano
,
S.
Bulanov
, and
J.
Koga
, “
One-dimensional electromagnetic solitons in a hot electron-positron plasma
,”
Phys. Plasmas
8
,
5113
(
2001
).
53.
T. B.
Yang
,
J.
Arons
, and
A. B.
Langdon
, “
Evolution of the Weibel instability in relativistically hot electron-positron plasmas
,”
Phys. Plasmas
1
,
3059
(
1994
).
54.
D. J.
Stark
,
C.
Bhattacharjee
,
A. V.
Arefiev
,
T.
Toncian
,
R. D.
Hazeltine
, and
S. M.
Mahajan
, “
Relativistic plasma polarizer: Impact of temperature anisotropy on relativistic transparency
,”
Phys. Rev. Lett.
115
,
025002
(
2015
).
55.
G.
Li
,
W. B.
Mori
, and
C.
Ren
, “
Laser hosing in relativistically hot plasmas
,”
Phys. Rev. Lett.
110
,
155002
(
2013
).
56.
Y.
Zhao
,
J.
Zheng
,
M.
Chen
,
L.-L.
Yu
,
S.-M.
Weng
,
C.
Ren
,
C.-S.
Liu
, and
Z.-M.
Sheng
, “
Effects of relativistic electron temperature on parametric instabilities for intense laser propagation in underdense plasma
,”
Phys. Plasmas
21
,
112114
(
2014
).
57.
J. S.
Ross
,
S. H.
Glenzer
,
J. P.
Palastro
,
B. B.
Pollock
,
D.
Price
,
L.
Divol
,
G. R.
Tynan
, and
D. H.
Froula
, “
Observation of relativistic effects in collective Thomson scattering
,”
Phys. Rev. Lett.
104
,
105001
(
2010
).
58.
M.
Borghesi
,
A. J.
MacKinnon
,
A. R.
Bell
,
R.
Gaillard
, and
O.
Willi
, “
Megagauss magnetic field generation and plasma jet formation on solid targets irradiated by an ultraintense picosecond laser pulse
,”
Phys. Rev. Lett.
81
,
112
(
1998
).
59.
G.
Sarri
,
A.
Macchi
,
C. A.
Cecchetti
,
S.
Kar
,
T. V.
Liseykina
,
X. H.
Yang
,
M. E.
Dieckmann
,
J.
Fuchs
,
M.
Galimberti
,
L. A.
Gizzi
,
R.
Jung
,
I.
Kourakis
,
J.
Osterholz
,
F.
Pegoraro
,
A. P. L.
Robinson
,
L.
Romagnani
,
O.
Willi
, and
M.
Borghesi
, “
Dynamics of self-generated, large amplitude magnetic fields following high-intensity laser matter interaction
,”
Phys. Rev. Lett.
109
,
205002
(
2012
).
60.
W.
Schumaker
,
N.
Nakanii
,
C.
McGuffey
,
C.
Zulick
,
V.
Chyvkov
,
F.
Dollar
,
H.
Habara
,
G.
Kalintchenko
,
A.
Maksimchuk
,
K. A.
Tanaka
,
A. G. R.
Thomas
,
V.
Yanovsky
, and
K.
Krushelnick
, “
Ultrafast electron radiography of magnetic fields in high-intensity laser-solid interactions
,”
Phys. Rev. Lett.
110
,
015003
(
2013
).
61.
M.
Shaikh
,
A. D.
Lad
,
K.
Jana
,
D.
Sarkar
,
I.
Dey
, and
G. R.
Kumar
, “
Megagauss magnetic fields in ultra-intense laser generated dense plasmas
,”
Plasma Phys. Controlled Fusion
59
,
014007
(
2016
).
62.
M.
Nakatsutsumi
,
Y.
Sentoku
,
A.
Korzhimanov
,
S.
Chen
,
S.
Buffechoux
,
A.
Kon
,
B.
Atherton
,
P.
Audebert
,
M.
Geissel
,
L.
Hurd
 et al., “
Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons
,”
Nat. Commun.
9
,
280
(
2018
).
63.
L. G.
Huang
,
H.
Takabe
, and
T. E.
Cowan
, “
Maximizing magnetic field generation in high power laser-solid interactions
,”
High Power Laser Sci. Eng.
7
,
e22
(
2019
).
64.
D.
Shokov
,
M.
Murakami
, and
J. J.
Honrubia
, “
Laser scaling for generation of megatesla magnetic fields by microtube implosions
,”
High Power Laser Sci. Eng.
9
,
e56
(
2021
).
65.
P. K.
Kaw
and
J. B.
McBride
, “
Surface waves on a plasma half-space
,”
Phys. Fluids
13
,
1784
(
1970
).
66.
A.
Macchi
,
F.
Cornolti
,
F.
Pegoraro
,
T. V.
Liseikina
,
H.
Ruhl
, and
V. A.
Vshivkov
, “
Surface oscillations in overdense plasmas irradiated by ultrashort laser pulses
,”
Phys. Rev. Lett.
87
,
205004
(
2001
).
67.
A.
Sgattoni
,
S.
Sinigardi
,
L.
Fedeli
,
F.
Pegoraro
, and
A.
Macchi
, “
Laser-driven Rayleigh-Taylor instability: Plasmonic effects and three-dimensional structures
,”
Phys. Rev. E
91
,
013106
(
2015
).
68.
T.
Kluge
,
J.
Metzkes
,
K.
Zeil
,
M.
Bussmann
,
U.
Schramm
, and
T. E.
Cowan
, “
Two surface plasmon decay of plasma oscillations
,”
Phys. Plasmas
22
,
064502
(
2015
).
69.
S. C.
Wilks
,
W. L.
Kruer
,
M.
Tabak
, and
A. B.
Langdon
, “
Absorption of ultra-intense laser pulses
,”
Phys. Rev. Lett.
69
,
1383
1386
(
1992
).
70.
A.
Bigongiari
,
M.
Raynaud
,
C.
Riconda
,
A.
Héron
, and
A.
Macchi
, “
Efficient laser-overdense plasma coupling via surface plasma waves and steady magnetic field generation
,”
Phys. Plasmas
18
,
102701
(
2011
).
71.
P.
Gibbon
and
A. R.
Bell
, “
Collisionless absorption in sharp-edged plasmas
,”
Phys. Rev. Lett.
68
,
1535
(
1992
).
72.
A.
Morace
,
N.
Iwata
,
Y.
Sentoku
,
K.
Mima
,
Y.
Arikawa
,
A.
Yogo
,
A.
Andreev
,
S.
Tosaki
,
X.
Vaisseau
,
Y.
Abe
,
S.
Kojima
,
S.
Sakata
,
M.
Hata
,
S.
Lee
,
K.
Matsuo
,
N.
Kamitsukasa
,
T.
Norimatsu
,
J.
Kawanaka
,
S.
Tokita
,
N.
Miyanaga
,
H.
Shiraga
,
Y.
Sakawa
,
M.
Nakai
,
H.
Nishimura
,
H.
Azechi
,
S.
Fujioka
, and
R.
Kodama
, “
Enhancing laser beam performance by interfering intense laser beamlets
,”
Nat. Commun.
10
,
2995
(
2019
).
73.
P.
Mora
, “
Plasma expansion into a vacuum
,”
Phys. Rev. Lett.
90
,
185002
(
2003
).
74.
V. Y.
Bychenkov
,
V. N.
Novikov
,
D.
Batani
,
V. T.
Tikhonchuk
, and
S. G.
Bochkarev
, “
Ion acceleration in expanding multispecies plasmas
,”
Phys. Plasmas
11
,
3242
(
2004
).
75.
O.
Portugall
,
N.
Puhlmann
,
H. U.
Müller
,
M.
Barczewski
,
I.
Stolpe
, and
M.
von Ortenberg
, “
Megagauss magnetic field generation in single-turn coils: New frontiers for scientific experiments
,”
J. Phys. D
32
,
2354
(
1999
).
76.
F.
Brunel
, “
Not-so-resonant, resonant absorption
,”
Phys. Rev. Lett.
59
,
52
(
1987
).
77.
D.
Ramsey
,
P.
Franke
,
T. T.
Simpson
,
D. H.
Froula
, and
J. P.
Palastro
, “
Vacuum acceleration of electrons in a dynamic laser pulse
,”
Phys. Rev. E
102
,
043207
(
2020
).
78.
T. D.
Arber
,
K.
Bennett
,
C. S.
Brady
,
A.
Lawrence-Douglas
,
M. G.
Ramsay
,
N. J.
Sircombe
,
P.
Gillies
,
R. G.
Evans
,
H.
Schmitz
,
A. R.
Bell
, and
C. P.
Ridgers
, “
Contemporary particle-in-cell approach to laser-plasma modelling
,”
Plasma Phys. Controlled Fusion
57
,
113001
(
2015
).
79.
A.
Chourasia
,
D.
Nadeau
, and
M.
Norman
, “
SeedMe: Data sharing building blocks
,” in
Proceedings of the Practice and Experience in Advanced Research Computing 2017 on Sustainability, Success and Impact
, PEARC17 (
ACM
,
New York
,
2017
), p.
69
.
80.
J.
Towns
,
T.
Cockerill
,
M.
Dahan
,
I.
Foster
,
K.
Gaither
,
A.
Grimshaw
,
V.
Hazlewood
,
S.
Lathrop
,
D.
Lifka
,
G. D.
Peterson
,
R.
Roskies
,
J. R.
Scott
, and
N.
Wilkins-Diehr
, “
XSEDE: Accelerating scientific discovery
,”
Comput. Sci. Eng.
16
,
62
(
2014
).
You do not currently have access to this content.