A laser-driven shock propagating through an isolated particle embedded in a plastic (CH) target was studied using the radiation-hydrodynamic code FLASH. Preliminary simulations using IONMIX equations of state (EOS) showed significant differences in the shock Hugoniot of aluminum compared to experimental data in the low-pressure regime [O(10) GPa], resulting in higher streamwise compression and deformation of an aluminum particle. Hence, a simple modification to the ideal gas EOS was developed and employed to describe the target materials and examine the particle dynamics. The evolution of the pressure field demonstrated a complex wave interaction, resulting in a highly unsteady particle drag which featured two drag minima due to shock focusing at the rear end of the particle and rarefaction stretching due to laser shut-off. Although ∼30% lateral expansion and ∼25% streamwise compression were observed, the aluminum particle maintained considerable integrity without significant distortion. Additional simulations examined the particle response for a range of particle densities, sizes, and acoustic impedances. The results revealed that lighter particles such as aluminum gained significant momentum, reaching up to ∼96% of the shocked CH's speed, compared to ∼29% for the heavier tungsten particles. Despite the differences seen in the early stage of shock interaction, particles with varying acoustic impedances ultimately reached the same peak velocity. This identified particle-to-host density ratio is an important factor in determining the inviscid terminal velocity of the particle. In addition, the modified EOS model presented in this study could be used to approximate solid materials in hydrocodes that lack material strength models.

1.
R. I.
Klein
,
K. S.
Budil
,
T. S.
Perry
, and
D. R.
Bach
, “
The interaction of supernova remnants with interstellar clouds: Experiments on the Nova laser
,”
Astrophys. J.
583
,
245
259
(
2003
).
2.
H. F.
Robey
,
T. S.
Perry
,
R. I.
Klein
,
J. O.
Kane
,
J. A.
Greenough
, and
T. R.
Boehly
, “
Experimental investigation of the three-dimensional interaction of a strong shock with a spherical density inhomogeneity
,”
Phys. Rev. Lett.
89
,
085001
(
2002
).
3.
J.
Hansen
,
H.
Robey
,
R.
Klein
, and
A.
Miles
, “
Experiment on the mass stripping of an interstellar cloud following shock passage
,”
Astrophys. J.
662
,
379
(
2008
).
4.
F.
Zhang
,
P. A.
Thibault
, and
R.
Link
, “
Shock interaction with solid particles in condensed matter and related momentum transfer
,”
Proc. R. Soc. A
459
,
705
726
(
2003
).
5.
R. C.
Ripley
,
F.
Zhang
, and
F.
Lien
, “
Acceleration and heating of metal particles in condensed explosive detonation
,”
AIP Conf. Proc.
955
,
409
412
(
2007
).
6.
J. H. J.
Niederhaus
,
J. A.
Greenough
,
J. G.
Oakley
,
D.
Ranjan
,
M. H.
Anderson
, and
R.
Bonazza
, “
A computational parameter study for the three-dimensional shock–bubble interaction
,”
J. Fluid Mech.
594
,
85
124
(
2008
).
7.
D.
Ranjan
,
J.
Oakley
, and
R.
Bonazza
, “
Shock-bubble interactions
,”
Annu. Rev. Fluid Mech.
43
,
117
140
(
2011
).
8.
R.
Betti
and
O. A.
Hurricane
, “
Inertial-confinement fusion with lasers
,”
Nat. Phys.
12
,
435
448
(
2016
).
9.
M.
Sun
,
T.
Saito
,
K.
Takayama
, and
H.
Tanno
, “
Unsteady drag on a sphere by shock wave loading
,”
Shock Waves
14
,
3
9
(
2005
).
10.
E. E.
Michaelides
, “
Hydrodynamic force and heat/mass transfer from particles, bubbles, and drops–The Freeman scholar lecture
,”
J. Fluids Eng.
125
,
209
238
(
2003
).
11.
I.
Eames
,
M.
Parmar
,
A.
Haselbacher
, and
S.
Balachandar
, “
On the unsteady inviscid force on cylinders and spheres in subcritical compressible flow
,”
Philos. Trans. R. Soc. A
366
,
2161
2175
(
2008
).
12.
M.
Parmar
,
A.
Haselbacher
, and
S.
Balachandar
, “
Modeling of the unsteady force for shock–particle interaction
,”
Shock Waves
19
,
317
329
(
2009
).
13.
Y.
Ling
,
A.
Haselbacher
, and
S.
Balachandar
, “
Importance of unsteady contributions to force and heating for particles in compressible flows: Part 1: Modeling and analysis for shock–particle interaction
,”
Int. J. Multiphase Flow
37
,
1026
1044
(
2011
).
14.
J.
Haas
and
B.
Sturtevant
, “
Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities
,”
J. Fluid Mech.
181
,
41
76
(
1987
).
15.
O.
Igra
and
K.
Takayama
, “
Shock tube study of the drag coefficient of a sphere in a non-stationary flow
,”
Proc. Roy. Soc. London, Ser. A
442
,
231
247
(
1993
).
16.
A. A.
Martinez
,
G. C.
Orlicz
, and
K. P.
Prestridge
, “
A new experiment to measure shocked particle drag using multi-pulse particle image velocimetry and particle tracking
,”
Exp. Fluids
56
,
1854
(
2015
).
17.
A. D.
Bordoloi
,
A. A.
Martinez
, and
K.
Prestridge
, “
Relaxation drag history of shock accelerated microparticles
,”
J. Fluid Mech.
823
,
R4
(
2017
).
18.
H.
Tanno
,
K.
Itoh
,
T.
Saito
, and
K.
Takayama
, “
Interaction of a shock with a sphere suspended in a vertical shock tube
,”
Shock Waves
13
,
191
210
(
2003
).
19.
P.
Sridharan
,
T. L.
Jackson
,
J.
Zhang
, and
S.
Balachandar
, “
Shock interaction with one-dimensional array of particles in air
,”
J. Appl. Phys.
117
,
075902
(
2015
).
20.
Y.
Mehta
,
C.
Neal
,
K.
Salari
,
T. L.
Jackson
,
S.
Balachandar
, and
S.
Thakur
, “
Propagation of a strong shock over a random bed of spherical particles
,”
J. Fluid Mech.
839
,
157
197
(
2018
).
21.
Y.
Mehta
,
K.
Salari
,
T. L.
Jackson
, and
S.
Balachandar
, “
Effect of Mach number and volume fraction in air-shock interacting with a bed of randomly distributed spherical particles
,”
Phys. Rev. Fluids
4
,
014303
(
2019
).
22.
Y.
Ling
,
A.
Haselbacher
,
S.
Balachandar
,
F. M.
Najjar
, and
D. S.
Stewart
, “
Shock interaction with a deformable particle: Direct numerical simulation and point-particle modeling
,”
J. Appl. Phys.
113
,
013504
(
2013
).
23.
J.
Clair
,
T.
McGrath
, and
S.
Balachandar
, “
Fully resolved coupled solid-fluid simulations of shock interaction with a layer of deformable aluminum particles
,”
Shock Waves
32
,
161
178
(
2021
).
24.
P.
Sridharan
,
T. L.
Jackson
,
J.
Zhang
,
S.
Balachandar
, and
S.
Thakur
, “
Shock interaction with deformable particles using a constrained interface reinitialization scheme
,”
J. Appl. Phys.
119
,
064904
(
2016
).
25.
B.
Fryxell
,
K.
Olson
,
P.
Ricker
,
F.
Timmes
,
M.
Zingale
,
D.
Lamb
,
P.
MacNeice
,
R.
Rosner
,
J.
Truran
, and
H.
Tufo
, “
FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes
,”
Astrophys. J. Suppl. Ser.
131
,
273
(
2000
).
26.
P.
Tzeferacos
,
M.
Fatenejad
,
N.
Flocke
,
C.
Graziani
,
G.
Gregori
,
D.
Lamb
,
D.
Lee
,
J.
Meinecke
,
A.
Scopatz
, and
K.
Weide
, “
FLASH MHD simulations of experiments that study shock-generated magnetic fields
,”
High Energy Density Phys.
17
,
24
31
(
2015
).
27.
J. J.
Macfarlane
, “
IONMIX - a code for computing the equation of state and radiative properties of LTE and non-LTE plasmas
,”
Comput. Phys. Commun.
56
,
259
278
(
1989
).
28.
L. F.
Henderson
, “
On the refraction of shock waves
,”
J. Fluid Mech.
198
,
365
386
(
1989
).
29.
G.
Dennis
,
Physics of Shock and Impact: Volume 1
(
IOP Publishing
,
2017
).
30.
S. P.
Lyon
, “
SESAME: The Los Alamos National Laboratory equation of state database
,”
Report No. LA-UR-92-3407
(
Los Alamos National Laboratory
,
1992
).
31.
D.
Farmakis
,
M.
McMullan
,
A.
Reyes
,
J.
Laune
,
M. B. P.
Adams
,
A.
Armstrong
,
Y. L. E.
Hansen
,
D.
Michta
,
K.
Moczulski
,
D.
Lamb
, and
P.
Tzeferacos
, “
Expanding the tabulated equation-of-state implementations in the FLASH code for the SESAME database
,”
Bull. Am. Phys. Soc.
66
, NP11.130 (
2021
).
32.
FLASH Center
,
FLASH User's Guide
(
FLASH Center for Computational Science
,
2019
).
33.
K.
Fujisawa
,
T. L.
Jackson
, and
S.
Balachandar
, “
Influence of baroclinic vorticity production on unsteady drag coefficient in shock–particle interaction
,”
J. Appl. Phys.
125
,
084901
(
2019
).
34.
S. P.
Marsh
,
LASL Shock Hugoniot Data
(
University of California Press
,
1980
).
35.
D.
Lee
, “
A solution accurate, efficient and stable unsplit staggered mesh scheme for three dimensional magnetohydrodynamics
,”
J. Comput. Phys.
243
,
269
292
(
2013
).
36.
P.
Colella
, “
Multidimensional upwind methods for hyperbolic conservation laws
,”
J. Comput. Phys.
87
,
171
200
(
1990
).
37.
P.
Colella
and
P. R.
Woodward
, “
The piecewise parabolic method (PPM) for gas-dynamical simulations
,”
J. Comput. Phys.
54
,
174
201
(
1984
).
38.
E. F.
Toro
,
M.
Spruce
, and
W.
Speares
, “
Restoration of the contact surface in the HLL-Riemann solver
,”
Shock Waves
4
,
25
34
(
1994
).
39.
A.
Elsied
,
N.
Termini
,
P.
Diwakar
, and
A.
Hassanein
, “
Characteristics of ions emission from ultrashort laser produced plasma
,”
Sci. Rep.
6
,
38256
(
2016
).
40.
R.
Saurel
and
R.
Abgrall
, “
A simple method for compressible multifluid flows
,”
SIAM J. Sci. Comput.
21
,
1115
1145
(
1999
).
41.
V.
Deledicque
and
M. V.
Papalexandris
, “
An exact Riemann solver for compressible two-phase flow models containing non-conservative products
,”
J. Comput. Phys.
222
,
217
245
(
2007
).
42.
Y.
Ju
,
Q.
Zhang
,
Z.
Gong
,
G.
Ji
, and
L.
Zhou
, “
Molecular dynamics simulation of shock melting of aluminum single crystal
,”
J. Appl. Phys.
114
,
093507
(
2013
).
43.
J.
Nilsen
,
A. L.
Kritcher
,
M. E.
Martin
,
R. E.
Tipton
,
H. D.
Whitley
,
D. C.
Swift
,
T.
Döppner
,
B. L.
Bachmann
,
A. E.
Lazicki
,
N. B.
Kostinski
,
B. R.
Maddox
,
G. W.
Collins
,
S. H.
Glenzer
, and
R. W.
Falcone
, “
Understanding the effects of radiative preheat and self-emission from shock heating on equation of state measurement at 100 s of Mbar using spherically converging shock waves in a NIF hohlraum
,”
Matter Radiat. Extremes
5
,
018401
(
2020
).
44.
Y.
Mehta
,
C.
Neal
,
T.
Jackson
,
S.
Balachandar
, and
S.
Thakur
, “
Shock interaction with three-dimensional face centered cubic array of particles
,”
Phys. Rev. Fluids
1
,
054202
(
2016
).
45.
H.
Naiman
and
D. D.
Knight
, “
The effect of porosity on shock interaction with a rigid, porous barrier
,”
Shock Waves
16
,
321
(
2007
).
46.
C. A.
Di Stefano
,
A. M.
Rasmus
,
F. W.
Doss
,
K. A.
Flippo
,
J. D.
Hager
,
J. L.
Kline
, and
P. A.
Bradley
, “
Multimode instability evolution driven by strong, high-energy-density shocks in a rarefaction-reflected geometry
,”
Phys. Plasmas
24
,
052101
(
2017
).
You do not currently have access to this content.