A neutral-gas and plasma shielding (NGPS) model is applied for cryogenic hydrogen–neon mixed pellet injection used for the mitigation of tokamak disruptions. The NGPS model is useful to evaluate the characteristics of ionized plasmoid (size, density, temperature, and radiation), while reproducing the scaling of the neutral gas shielding model. It is found that even if one takes into account the optical thickness for radiation, the energy loss due to line radiation associated with neon is strong enough to limit the temperature and the pressure of the ionized plasmoid for pure neon or hydrogen–neon mixed pellets in the early phase of the material homogenization. Consequently, the ionized plasmoid of the neon mixed pellets is expected to homogenize along the magnetic field line where the ablated material is released—without significantly making the cross-field drift motion—as compared to pure hydrogen pellets.

1.
S. L.
Milora
,
W. A.
Houlberg
,
L. L.
Lengyel
, and
V.
Mertens
,
Nucl. Fusion
35
,
657
(
1995
).
2.
B.
Pégourié
,
Plasma Phys. Controlled Fusion
49
,
R87
(
2007
).
3.
B. V.
Kuteev
,
V. Yu.
Sergeev
, and
S.
Sudo
,
Nucl. Fusion
35
,
1167
(
1995
).
4.
R.
Yoshino
,
T.
Kondoh
,
Y.
Neyatani
,
K.
Itami
,
Y.
Kawano
, and
N.
Isei
,
Plasma Phys. Controlled Fusion
39
,
313
(
1997
).
5.
M.
Lehnen
,
D. J.
Campbell
,
D.
Hu
,
U.
Kruezi
,
T. C.
Luce
,
S.
Maruyama
,
J. A.
Snipes
,
R.
Sweeney
,
N. W.
Eidietis
,
A.
Matsuyama
, and
E.
Nardon
, in
Proceedings for the 27th IAEA FEC
(
2018
).
6.
S. K.
Combs
,
S. J.
Meitner
,
L. R.
Baylor
,
J. B. O.
Caughman
,
N.
Commaux
,
D. T.
Fehling
,
C. R.
Foust
,
T. C.
Jernigan
,
J. M.
McGill
,
P. B.
Parks
, and
D. A.
Rasmussen
,
IEEE Trans. Plasma Sci.
38
,
400
(
2010
).
7.
W. A.
Houlberg
,
S. L.
Milora
, and
S. E.
Attenberger
,
Nucl. Fusion
28
,
595
(
1988
).
8.
B.
Pégourié
,
J.-M.
Picchiottino
,
H.-W.
Darwin
,
A.
Géraud
, and
M.
Chatelier
,
Nucl. Fusion
33
,
591
(
1993
).
9.
L.
Garzotti
,
B.
Pégourié
,
A.
Géraud
,
D.
Frigione
, and
L. R.
Baylor
,
Nucl. Fusion
37
,
1167
(
1997
).
10.
B.
Pégourié
,
V.
Waller
,
R. J.
Dumont
,
L.-G.
Eriksson
,
L.
Garzotti
,
A.
Géraud
, and
F.
Imbeaux
,
Plasma Phys. Controlled Fusion
47
,
17
(
2005
).
11.
V. A.
Rozhansky
and
Y.
Senichenkov
,
Plasma Phys. Rep.
31
,
993
(
2005
).
12.
L. R.
Baylor
,
A.
Geraud
,
W. A.
Houlberg
,
D.
Frigione
,
M.
Gadeberg
,
T. C.
Jernigan
,
J.
de Kloe
,
P.
Kupschus
,
B. V.
Kuteev
,
P.
Lang
,
A. A. M.
Oomens
,
A. L.
Qualls
,
K. N.
Sato
, and
G. L.
Schmidt
,
Nucl. Fusion
37
,
445
(
1997
).
13.
P. B.
Parks
and
R. J.
Turnbull
,
Phys. Fluids
21
,
1735
(
1978
).
14.
A.
Matsuyama
,
B.
Pégourié
,
R.
Sakamoto
,
J. S.
Mishra
,
G.
Motojima
, and
H.
Yamada
,
Plasma Phys. Controlled Fusion
54
,
035007
(
2012
).
15.
J. J.
MacFarlane
,
I.
Golovkin
,
P.
Woodruff
,
D. R.
Welch
,
B. V.
Oliver
,
T. A.
Mehlhorn
, and
R. B.
Campbell
,
Inertial Fusion Sciences and Application
(ANS,
2003
) p.
457
; available at https://www.ans.org/store/item-700307/.
16.
P. T.
Lang
,
K.
Büchl
,
M.
Kaufmann
,
R. S.
Lang
,
V.
Mertens
,
H. W.
Müller
,
J.
Neuhauser
,
ASDEX Upgrade, and NI Teams,
Phys. Rev. Lett.
79
,
1487
(
1997
).
17.
N.
Bosviel
,
P.
Parks
, and
R.
Samulyak
,
Phys. Plasmas
28
,
012506
(
2021
).
18.
F. S.
Felber
,
P. H.
Miller
,
P. B.
Parks
,
R.
Prater
, and
D. F.
Vaslow
,
Nucl. Fusion
19
,
1061
(
1979
).
19.
L. L.
Lengyel
,
Phys. Fluids
31
,
1577
(
1988
).
20.
S. E.
Attenberger
and
W. A.
Houlberg
,
Nucl. Technol. Fusion
4
,
129
(
1983
).
21.
W. T.
Miles
,
R.
Thompson
, and
A. E. S.
Green
,
J. Appl. Phys.
43
,
678
(
1972
).
23.
M. J.
Berger
,
J. S.
Coursey
,
M. A.
Zucker
, and
J.
Chang
,
ESTAR, PSTAR, and ASTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions (Version 1.2.3)
(
National Institute of Standards and Technology
,
Gaithersburg
,
MD
,
2005
).
24.
Biagi database, see
www.lxcat.net for “the transcription of data from S. F. Biagi's Fortran code, Magboltz version 8.9.” (last accessed August 5, 2021).
25.
L. C.
Pitchford
,
L. L.
Alves
,
K.
Bartschat
,
S. F.
Biagi
,
M. C.
Bordage
,
I.
Bray
,
C. E.
Brion; M
,
J.
Brunger
,
L.
Campbell
,
A.
Chachereau
,
B.
Chaudhury
,
L. G.
Christophorou
,
E.
Carbone
,
N. A.
Dyatko
,
C. M.
Franck
,
D. V.
Fursa
,
R. K.
Gangwar
,
V.
Guerra
,
P.
Haefliger
,
G. J. M.
Hagelaar
,
A.
Hoesl
,
Y.
Itikawa
,
I. V.
Kochetov
,
R. P.
McEachran
,
W. L.
Morgan
,
A. P.
Napartovich
,
V.
Puech
,
M.
Rabie
,
L.
Sharma
,
R.
Srivastava
,
A. D.
Stauffer
,
J.
Tennyson
,
J.
de Urquijo
,
J.
van Dijk
,
L. A.
Viehland
,
M. C.
Zammit
,
O.
Zatsarinny
, and
S.
Pancheshnyi
, “
LXCat: An open-access, web-based platform for data needed for modeling low temperature plasmas
,”
Plasma Process. Polym.
14
,
1600098
(
2017
).
26.
P. B.
Parks
,
J. S.
Leffler
, and
R. K.
Fisher
,
Nucl. Fusion
28
,
477
(
1988
).
27.
P. B.
Parks
,
G. A.
Gerdin
,
L. L.
Vahala
, and
A. G.
Elcashlan
,
Nucl. Fusion
34
,
417
(
1994
).
28.
A. K.
Fontanilla
and
B. N.
Breizman
,
Nucl. Fusion
59
,
096033
(
2019
).
29.
L.
Hesslow
,
O.
Embréus
,
M.
Hoppe
,
T. C.
DuBois
,
G.
Papp
,
M.
Rahm
, and
T.
Fülöp
,
J. Plasma Phys.
84
,
905840605
(
2018
).
30.
H.
Tawara
,
Y.
Itikawa
,
H.
Nishimura
, and
M.
Yoshino
,
J. Phys. Chem. Ref. Data
19
,
617
(
1990
).
31.
J.-S.
Yoon
,
M.-Y.
Song
,
J.-M.
Han
,
S. H.
Hwang
,
W.-S.
Chang
,
B.
Lee
, and
Y.
Itikawa
,
J. Phys. Chem. Ref. Data
37
,
913
(
2008
).
32.
B.
Pégourié
and
J.-M.
Picchiottino
,
Plasma Phys. Controlled Fusion
35
,
B157
(
1993
).
33.
V.
Rozhansky
,
I.
Veselova
, and
S.
Voskoboynikov
,
Plasma Phys. Controlled Fusion
37
,
399
(
1995
).[Database][Mismatch]
34.
P. B.
Parks
,
W. D.
Sessions
, and
L. R.
Baylor
,
Phys. Plasmas
7
,
1968
(
2000
).
35.
V.
Rozhansky
,
I.
Senichenkov
,
I.
Veselova
, and
R.
Schneider
,
Plasma Phys. Controlled Fusion
46
,
575
(
2004
).
36.
B.
Pégourié
,
V.
Waller
,
H.
Nehme
,
L.
Garzotti
, and
A.
Géraud
,
Nucl. Fusion
47
,
44
(
2007
).
37.
38.
P. B.
Parks
, “
A theoretical model for the penetration of a shattered-pellet debris plume
,” in
Theory and Simulation of Disruptions Workshop
(online 2017); available at https://tsdw.pppl.gov/Talks/2017/Lexar/Wednesday%20Session%201/Parks.pdf.
39.
S.
Jachmich
,
U.
Kruezi
,
M.
Lehnen
,
M.
Baruzzo
,
L. R.
Baylor
,
D.
Carnevale
,
D.
Craven
,
N. W.
Eidietis
,
O.
Ficker
,
T. E.
Gebhart
,
S.
Gerasimov
,
J. L.
Herfindal
,
E.
Hollmann
,
A.
Huber
,
P.
Lmas
,
J.
Lovell
,
A.
Manzanares
,
M.
Maslov
,
J.
Mlynar
,
G.
Pautasson
,
C.
Paz-Soldan
,
A.
Peacock
,
L.
Piron
,
V.
Plyusnin
,
M.
Reinke
,
C.
Reux
,
F.
Rimini
,
U.
Sheikh
,
D.
Shiraki
,
S.
Silburn
,
R.
Sweeney
,
J.
Wilson
, and
JET Contributors
, in
Proceedings of the 28th IAEA Fusion Energy Conference
(
2021
).
40.
E.
Nardon
,
D.
Hu
,
M.
Hoelzl
,
D.
Bonfiglio
, and
the JOREK Team
,
Nucl. Fusion
60
,
126040
(
2020
).
41.
A.
Matsuyama
,
E.
Nardon
,
M.
Honda
,
T.
Shiroto
, and
M.
Lehnen
, in
Proceedings of the 28th IAEA Fusion Energy Conference
(
2021
).
42.
D.
Shiraki
,
J-TEXT, KSTAR, DIII-D, and JET teams
, in
(Virtual) Technical Meeting on Plasma Disruptions and Their Mitigation, WebEx Meeting
, 20–23 July (
2020
).
43.
A.
Matsuyama
and
R.
Sakamoto
,
Plasma Fusion Res.
17
,
2402017
(
2022
).
44.
D. I.
Kiramov
and
B. N.
Breizman
,
Phys. Plasmas
27
,
022302
(
2020
).
45.
D. I.
Kiramov
and
B. N.
Breizman
,
Phys. Plasmas
27
,
082303
(
2020
).
46.
R.
Samulyak
,
S.
Yuan
,
N.
Naitlho
, and
P. B.
Parks
,
Nucl. Fusion
61
,
046007
(
2021
).
47.
P.
Aleynikov
,
A. M.
Arnold
,
B. N.
Breizman
,
P.
Helander
, and
A.
Runov
, in
Proceedings of the 28th IAEA Fusion Energy Conference
(
2021
).
You do not currently have access to this content.