We investigate parametric processes in magnetized plasmas, driven by a large-amplitude pump light wave. Our focus is on laser–plasma interactions relevant to high-energy-density (HED) systems, such as the National Ignition Facility and the Sandia MagLIF concept. We present a self-contained derivation of a “parametric” dispersion relation for magnetized three-wave interactions, meaning the pump wave is included in the equilibrium, similar to the unmagnetized work of Drake et al., Phys. Fluids 17, 778 (1974). For this, we use a multi-species plasma fluid model and Maxwell's equations. The application of an external B field causes right- and left-polarized light waves to propagate with differing phase velocities. This leads to Faraday rotation of the polarization, which can be significant in HED conditions. Phase-matching and linear wave dispersion relations show that Raman and Brillouin scattering have modified spectra due to the background B field, though this effect is usually small in systems of current practical interest. We study a scattering process we call stimulated whistler scattering, where a light wave decays to an electromagnetic whistler wave (ωωce) and a Langmuir wave. This only occurs in the presence of an external B field, which is required for the whistler wave to exist.

1.
G. E.
Kemp
,
J. D.
Colvin
,
B. E.
Blue
, and
K. B.
Fournier
, “
Simulation study of enhancing laser driven multi-kev line-radiation through application of external magnetic fields
,”
Phys. Plasmas
23
,
101204
(
2016
).
2.
D. B.
Schaeffer
,
W.
Fox
,
D.
Haberberger
,
G.
Fiksel
,
A.
Bhattacharjee
,
D. H.
Barnak
,
S. X.
Hu
, and
K.
Germaschewski
, “
Generation and evolution of high-mach-number laser-driven magnetized collisionless shocks in the laboratory
,”
Phys. Rev. Lett.
119
,
025001
(
2017
).
3.
S. A.
Slutz
,
M. C.
Herrmann
,
R. A.
Vesey
,
A. B.
Sefkow
,
D. B.
Sinars
,
D. C.
Rovang
,
K. J.
Peterson
, and
M. E.
Cuneo
, “
Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field
,”
Phys. Plasmas
17
,
056303
(
2010
).
4.
M. R.
Gomez
,
S. A.
Slutz
,
A. B.
Sefkow
,
D. B.
Sinars
,
K. D.
Hahn
,
S. B.
Hansen
,
E. C.
Harding
,
P. F.
Knapp
,
P. F.
Schmit
,
C. A.
Jennings
,
T. J.
Awe
,
M.
Geissel
,
D. C.
Rovang
,
G. A.
Chandler
,
G. W.
Cooper
,
M. E.
Cuneo
,
A. J.
Harvey-Thompson
,
M. C.
Herrmann
,
M. H.
Hess
,
O.
Johns
,
D. C.
Lamppa
,
M. R.
Martin
,
R. D.
McBride
,
K. J.
Peterson
,
J. L.
Porter
,
G. K.
Robertson
,
G. A.
Rochau
,
C. L.
Ruiz
,
M. E.
Savage
,
I. C.
Smith
,
W. A.
Stygar
, and
R. A.
Vesey
, “
Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion
,”
Phys. Rev. Lett.
113
,
155003
(
2014
).
5.
R.
Jones
and
W.
Mead
, “
The physics of burn in magnetized deuterium-tritium plasmas: Spherical geometry
,”
Nucl. Fusion
26
,
127
137
(
1986
).
6.
I.
Lindemuth
and
R.
Kirkpatrick
, “
Parameter space for magnetized fuel targets in inertial confinement fusion
,”
Nucl. Fusion
23
,
263
284
(
1983
).
7.
M. R.
Edwards
,
Y.
Shi
,
J. M.
Mikhailova
, and
N. J.
Fisch
, “
Laser amplification in strongly magnetized plasma
,”
Phys. Rev. Lett.
123
,
025001
(
2019
).
8.
W. L.
Kruer
,
The Physics of Laser Plasma Interactions
(
Westview Press
,
Boulder, CO
,
2003
).
9.
J. D.
Lindl
,
P.
Amendt
,
R. L.
Berger
,
S. G.
Glendinning
,
S. H.
Glenzer
,
S. W.
Haan
,
R. L.
Kauffman
,
O. L.
Landen
, and
L. J.
Suter
, “
The physics basis for ignition using indirect-drive targets on the national ignition facility
,”
Phys. Plasmas
11
,
339
491
(
2004
).
10.
G.
Velarde
,
Y.
Ronen
, and
J. M.
Martinez-Val
,
Nuclear Fusion by Inertial Confinement: A Comprehensive Treatise
(
CRC Press
,
1993
), pp.
360
361
.
11.
R. K.
Kirkwood
,
D. J.
Strozzi
,
P. A.
Michel
,
D. A.
Callahan
,
B.
Raymond
,
G.
Gururangan
,
B. J.
MacGowan
, and
NIF Team
, “
Laser backscatter damage risk assessments of NIF target experiments
,” in
APS Division of Plasma Physics Meeting Abstracts
, APS Meeting Abstracts, Vol.
2014
(SAO/NASA Astrophysics Data System,
2014
), p.
NP8-117
.
12.
T.
Chapman
,
P.
Michel
,
J.-M.
Di Nicola
,
R. L.
Berger
,
P. K.
Whitman
,
J. D.
Moody
,
K. R.
Manes
,
M. L.
Spaeth
,
M. A.
Belyaev
,
C. A.
Thomas
, and
B. J.
MacGowan
, “
Investigation and modeling of optics damage in high-power laser systems caused by light backscattered in plasma at the target
,”
J. Appl. Phys.
125
,
033101
(
2019
).
13.
J. D.
Lindl
,
Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive
(
Springer-Verlag
,
1998
), Chap. 11.
14.
L.
Lancia
,
A.
Giribono
,
L.
Vassura
,
M.
Chiaramello
,
C.
Riconda
,
S.
Weber
,
A.
Castan
,
A.
Chatelain
,
A.
Frank
,
T.
Gangolf
,
M. N.
Quinn
,
J.
Fuchs
, and
J.-R.
Marquès
, “
Signatures of the self-similar regime of strongly coupled stimulated Brillouin scattering for efficient short laser pulse amplification
,”
Phys. Rev. Lett.
116
,
075001
(
2016
).
15.
J.
Ren
,
W.
Cheng
,
S.
Li
, and
S.
Suckewer
, “
A new method for generating ultraintense and ultrashort laser pulses
,”
Nat. Phys.
3
,
732
(
2007
).
16.
K. H.
Lehmann
and
G.
Spatschek
, “
Nonlinear Brillouin amplification of finite-duration seeds in the strong coupling regime
,”
Phys. Plasmas
20
,
073112
(
2013
).
17.
L. J.
Perkins
,
B. G.
Logan
,
G. B.
Zimmerman
, and
C. J.
Werner
, “
Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields
,”
Phys. Plasmas
20
,
072708
(
2013
).
18.
L. J.
Perkins
,
D. J.
Strozzi
,
M. A.
Rhodes
,
B. G.
Logan
,
D. D.
Ho
, and
S. A.
Hawkins
, “
The application of imposed magnetic fields to ignition and thermonuclear burn on the National Ignition Facility
,”
Bull. Am. Phys. Soc.
59
, 15 (
2014
).
19.
J.
Moody
,
B.
Pollock
,
H.
Sio
,
D.
Strozzi
,
D.
Ho
,
C.
Walsh
,
S.
Kucheyev
,
B.
Kozioziemski
,
E.
Carroll
,
J.
Fry
 et al., “
Progress on the magnetized ignition experimental platform for the National Ignition Facility
,”
Bull. Am. Phys. Soc.
66
, 13 (
2021
).
20.
N. M.
Laham
,
A. S. A.
Nasser
, and
A. M.
Khateeb
, “
Effects of axial magnetic fields on backward Raman scattering in inhomogeneous plasmas
,”
Phys. Scr.
57
,
253
257
(
1998
).
21.
L.
Stenflo
and
G.
Brodin
, “
On the parametric decay of a circularly polarized wave
,”
J. Plasma Phys.
77
,
431
435
(
2011
).
22.
Y.
Shi
, “
Three-wave interactions in magnetized warm-fluid plasmas: General theory with evaluable coupling coefficient
,”
Phys. Rev. E
99
,
063212
(
2019
).
23.
B. J.
Winjum
,
F. S.
Tsung
, and
W. B.
Mori
, “
Mitigation of stimulated raman scattering in the kinetic regime by external magnetic fields
,”
Phys. Rev. E
98
,
043208
(
2018
).
24.
D. W.
Forslund
,
J. M.
Kindel
, and
E. L.
Lindman
, “
Parametric excitation of electromagnetic waves
,”
Phys. Rev. Lett.
29
,
249
252
(
1972
).
25.
L.
Stenflo
and
G.
Brodin
, “
Parametric decay of whistler waves in electron magnetohydrodynamics
,”
Phys. Scr.
83
,
069801
(
2010
).
26.
A.
Kumar
and
V. K.
Tripathi
, “
Stimulated scattering of a whistler off an ion Bernstein wave
,”
Phys. Scr.
84
(
6
),
065505
(
2011
).
27.
M.
Porkolab
and
R. P. H.
Chang
, “
Nonlinear wave effects in laboratory plasmas: A comparison between theory and experiment
,”
Rev. Mod. Phys.
50
,
745
795
(
1978
).
28.
J. F.
Drake
,
P. K.
Kaw
,
Y. C.
Lee
,
G.
Schmid
,
C. S.
Liu
, and
M. N.
Rosenbluth
, “
Parametric instabilities of electromagnetic waves in plasmas
,”
Phys. Fluids
17
,
778
785
(
1974
).
29.
W. M.
Manheimer
and
E.
Ott
, “
Parametric instabilities induced by the coupling of high and low frequency plasma modes
,”
Phys. Fluids
17
,
1413
1421
(
1974
).
30.
B. I.
Cohen
, “
Compact dispersion relations for parametric instabilities of electromagnetic waves in magnetized plasmas
,”
Phys. Fluids
30
,
2676
2680
(
1987
).
31.
V.
Stefan
,
N. A.
Krall
, and
J. B.
McBride
, “
The nonlinear eikonal relation of a weakly inhomogeneous magnetized plasma upon the action of arbitrarily polarized finite wavelength electromagnetic waves
,”
Phys. Fluids
30
,
3703
3712
(
1987
).
32.
T. H.
Stix
,
Waves in Plasmas
, 2nd ed. (
Springer-Verlag
,
New York
,
1992
), p.
10
.
33.
C. J.
Randall
,
J. R.
Albritton
, and
J. J.
Thomson
, “
Theory and simulation of stimulated Brillouin scatter excited by nonabsorbed light in laser fusion systems
,”
Phys. Fluids
24
,
1474
1484
(
1981
).
34.
W. L.
Kruer
,
S. C.
Wilks
,
B. B.
Afeyan
, and
R. K.
Kirkwood
, “
Energy transfer between crossing laser beams
,”
Phys. Plasmas
3
,
382
385
(
1996
).
35.
P.
Michel
,
L.
Divol
,
E. A.
Williams
,
S.
Weber
,
C. A.
Thomas
,
D. A.
Callahan
,
S. W.
Haan
,
J. D.
Salmonson
,
S.
Dixit
,
D. E.
Hinkel
,
M. J.
Edwards
,
B. J.
MacGowan
,
J. D.
Lindl
,
S. H.
Glenzer
, and
L. J.
Suter
, “
Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer
,”
Phys. Rev. Lett.
102
,
025004
(
2009
).
36.
D. J.
Strozzi
,
E. A.
Williams
,
D. E.
Hinkel
,
D. H.
Froula
,
R. A.
London
, and
D. A.
Callahan
, “
Ray-based calculations of backscatter in laser fusion targets
,”
Phys. Plasmas
15
,
102703
(
2008
).
You do not currently have access to this content.