A plasma glow discharge tube, a versatile device widely employed in several scientific and industrial applications, is also a useful tool for many basic plasma studies in the laboratory. Anode glow oscillations are well-known phenomena in such devices that arise from an instability of the plasma glow around a small positively charged electrode. Depending upon the gas pressure, the applied DC voltage, and the distance between the electrodes, these oscillations can display a rich dynamical behavior. Over a certain parametric regime, these nonlinear oscillations exhibit a stable limit cycle behavior that has been modeled in the past by a Van der Pol like equation. While such a model equation provides a qualitative description of the observations, it lacks quantitative agreement and does not have any predictive capability. We employ the sparse identification of nonlinear dynamics (SINDy) method to obtain a model equation directly from a time series of the experimental data. Our model captures well the main features of the experimental data in a quantitative manner. It also shows a significant deviation from the Van der Pol model due to additional contributions that are akin to nonlinear damping in a Rayleigh oscillator. Such a hybrid Van der Pol–Rayleigh oscillator model could provide a useful paradigm for future explorations of the nonlinear dynamics of this system.

1.
Y.
Raizer
,
Gas Discharge Physics
(
Springer
,
Berlin
,
1997
).
2.
A.
Bogaerts
,
J. Anal. At. Spectrom.
14
,
1375
(
1999
).
3.
A.
Bogaerts
,
E.
Neyts
,
R.
Gijbels
, and
J.
van der Mullen
,
Spectrochim. Acta, Part B
57
,
609
(
2002
).
4.
X.
Wang
,
M.
Zhou
, and
X.
Jin
,
Electrochim. Acta
83
,
501
(
2012
).
5.
S.
Sengupta
,
Plasma Chem. Plasma Process.
37
,
897
945
(
2017
).
6.
B. E.
Keen
and
W. H. W.
Fletcher
,
J. Phys. D: Appl. Phys.
3
,
1868
(
1970
).
7.
P. Y.
Cheung
and
A. Y.
Wong
,
Phys. Rev. Lett.
59
,
551
(
1987
).
8.
F.
Greiner
,
T.
Klinger
,
H.
Klostermann
, and
A.
Piel
,
Phys. Rev. Lett.
70
,
3071
(
1993
).
9.
T.
Klinger
,
F.
Greiner
,
A.
Rohde
, and
A.
Piel
,
Phys. Plasmas
2
,
1822
(
1995
).
10.
M.
Nurujjaman
,
R.
Narayanan
, and
A. N.
Sekar Iyengar
,
Chaos
17
,
043121
(
2007
).
11.
M. A.
Mujawar
,
S. K.
Karkari
, and
M. M.
Turner
,
Plasma Sources Sci. Technol.
20
,
015024
(
2011
).
12.
N.
Chaubey
,
S.
Mukherjee
,
A.
Sekar Iyengar
, and
A.
Sen
,
Phys. Plasmas
22
,
022312
(
2015
).
13.
D.
Saha
,
P.
Kumar Shaw
,
M.
Janaki
,
A.
Sekar Iyengar
,
S.
Ghosh
,
V.
Mitra
, and
A.
Michael Wharton
,
Phys. Plasmas
21
,
032301
(
2014
).
14.
E.
Kadji
,
N.
Nbendjo
,
C.
Orou
, and
P.
Talla
,
Phys. Plasmas
15
,
032308
(
2008
).
15.
T.
Klinger
,
F.
Greiner
,
A.
Rohde
,
A.
Piel
, and
M. E.
Koepke
,
Phys. Rev. E
52
,
4316
(
1995
).
16.
X.
Hong
,
R. J.
Mitchell
,
S.
Chen
,
C.
Harris
,
K.
Li
, and
G.
Irwin
,
Int. J. Syst. Sci.
39
,
925
(
2008
).
17.
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
,
Proc. Natl. Acad. Sci.
113
,
3932
(
2016
).
18.
J.-C.
Loiseau
,
B. R.
Noack
, and
S. L.
Brunton
,
J. Fluid Mech.
844
,
459
(
2018
).
19.
M.
Sorokina
,
S.
Sygletos
, and
S.
Turitsyn
,
Opt. Express
24
,
30433
(
2016
).
20.
A.
Narasingam
and
J. S.-I.
Kwon
,
Comput. Chem. Eng.
119
,
101
(
2018
).
21.
L.
Boninsegna
,
F.
Nüske
, and
C.
Clementi
,
J. Chem. Phys.
148
,
241723
(
2018
).
22.
M.
Hoffmann
,
C.
Fröhner
, and
F.
Noé
,
J. Chem. Phys.
150
,
025101
(
2019
).
23.
N. M.
Mangan
,
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
,
IEEE Trans. Mol. Biol. Multi-Scale Commun.
2
,
52
(
2016
).
24.
M.
Dam
,
M.
Brøns
,
J.
Juul Rasmussen
,
V.
Naulin
, and
J. S.
Hesthaven
,
Phys. Plasmas
24
,
022310
(
2017
).
25.
A. A.
Kaptanoglu
,
J. L.
Callaham
,
A.
Aravkin
,
C. J.
Hansen
, and
S. L.
Brunton
,
Phys. Rev. Fluids
6
,
094401
(
2021
).
26.
A. A.
Kaptanoglu
,
K. D.
Morgan
,
C. J.
Hansen
, and
S. L.
Brunton
,
Phys. Rev. E
104
,
015206
(
2021
).
27.
A. A.
Kaptanoglu
,
K. D.
Morgan
,
C. J.
Hansen
, and
S. L.
Brunton
, e-print arXiv:2101.03436 (
2021
).
28.
E. P.
Alves
and
F.
Fiuza
, e-print arXiv:2011.01927 (
2020
).
29.
B.
Jorns
,
Plasma Sources Sci. Technol.
27
,
104007
(
2018
).
30.
C. M.
Greve
,
M.
Majji
, and
K.
Hara
,
Phys. Plasmas
28
,
093509
(
2021
).
31.
F.
Takens
, in
Dynamical Systems and Turbulence, Warwick 1980
, edited by
D.
Rand
and
L.-S.
Young
(
Springer
,
Berlin/Heidelberg
,
1981
), pp.
366
381
.
32.
D.
Broomhead
and
G. P.
King
,
Phys. D: Nonlinear Phenom.
20
,
217
(
1986
).
33.
C.
Greve
,
K.
Hara
,
R.
Martin
,
D.
Eckhardt
, and
J.
Koo
,
J. Appl. Phys.
125
,
244901
(
2019
).
34.
W. K.
Sharabati
and
B.
Xi
, in
2016 23rd International Conference on Pattern Recognition (ICPR)
(
IEEE
,
2016
), pp.
3198
3203
.
35.
A.
Aravkin
,
J. V.
Burke
,
L.
Ljung
,
A.
Lozano
, and
G.
Pillonetto
,
Automatica
86
,
63
(
2017
).
36.
T.
Meinl
and
E. W.
Sun
,
Stud. Nonlinear Dyn. Econometrics
16
,
5
(
2012
).
37.
L. I.
Rudin
,
S.
Osher
, and
E.
Fatemi
,
Phys. D: Nonlinear Phenom.
60
,
259
(
1992
).
38.
A.
Savitzky
and
M. J.
Golay
,
Anal. Chem.
36
,
1627
(
1964
).
39.
K.
Kaheman
,
J. N.
Kutz
, and
S. L.
Brunton
,
Proc. R. Soc. A
476
,
20200279
(
2020
).
40.
B.
de Silva
,
K.
Champion
,
M.
Quade
,
J.-C.
Loiseau
,
J.
Kutz
, and
S.
Brunton
,
J. Open Source Software
5
,
2104
(
2020
).
41.
A. A.
Kaptanoglu
,
B. M.
de Silva
,
U.
Fasel
,
K.
Kaheman
,
J. L.
Callaham
,
C. B.
Delahunt
,
K.
Champion
,
J.-C.
Loiseau
,
J. N.
Kutz
, and
S. L.
Brunton
, e-print arXiv:2111.08481 (
2021
).
42.
U.
Fasel
,
J. N.
Kutz
,
B. W.
Brunton
, and
S. L.
Brunton
, e-print arXiv:2111.10992 (
2021
).
43.
P. A.
Reinbold
,
D. R.
Gurevich
, and
R. O.
Grigoriev
,
Phys. Rev. E
101
,
010203
(
2020
).
44.
J. W.
Strutt
and
J. W. S. B.
Rayleigh
,
The Theory of Sound
(
Macmillan
,
1877
), Vol.
1
.
45.
A.
Monwanou
,
L.
Hinvi
,
C.
Miwadinou
, and
J. C.
Orou
,
Int. J. Eng. Appl. Sci.
4
,
257398
(
2017
).
46.
D. I.
Sinelshchikov
,
Phys. Lett. A
384
,
126655
(
2020
).
47.
V.
Muralidharan
,
P. P.
Balasubramani
,
S.
Chakravarthy
,
S. J.
Lewis
, and
A. A.
Moustafa
,
Front. Comput. Neurosci.
7
,
190
(
2014
).
48.
K.
Champion
,
P.
Zheng
,
A. Y.
Aravkin
,
S. L.
Brunton
, and
J. N.
Kutz
,
IEEE Access
8
,
169259
(
2020
).
49.
H. C. S.
Hsuan
,
R. C.
Ajmera
, and
K. E.
Lonngren
,
Appl. Phys. Lett.
11
,
277
(
1967
).
You do not currently have access to this content.