Two-dimensional magnetosonic beams directed along a line forming a constant angle θ with the equilibrium straight magnetic field are considered. Perturbations in a plasma are described by the system of ideal magnetohydrodynamic equations. The dynamics of perturbations in a beam are different in the cases of fast and slow modes, and it is determined by θ and equilibrium parameters of a plasma. In particular, a beam divergence may be unusual in the case of parallel propagation (θ = 0). Diffraction is more pronounced in the case of parallel propagation as compared to a flow without magnetic field, and less manifested in the case of perpendicular propagation. The beams propagating oblique to the magnetic field do not reveal diffraction. The dynamics of perturbations in a beam are analytically described in the cases of weak and strong nonlinearity compared to diffraction. Small magnitude perturbations at the axis of a beam in unusual cases propagate slower than that in the plane wave. Involving of thermal conduction leads to the coupling equations describing thermal self-action of a beam, which behaves differently in the ordinary and unusual cases. Self-focusing may occur in the presence of a magnetic field instead of conventional defocusing in gases.

1.
O. V.
Rudenko
and
S. I.
Soluyan
,
Theoretical Foundations of Nonlinear Acoustics
(
Plenum
,
New York
,
1977
).
2.
L.
Spitzer
,
Physics of Fully Ionized Gases
(
Wiley
,
New York
,
1962
).
3.
N. A.
Krall
and
A. W.
Trivelpiece
,
Principles of Plasma Physics
(
McGraw Hill
,
New York
,
1973
).
4.
J. P.
Freidberg
,
Ideal Magnetohydrodynamics
(
Plenum Press
,
New York
,
1987
).
5.
G. J. J.
Botha
,
T. D.
Arber
,
V. M.
Nakariakov
, and
F. P.
Keenan
, “
A developed stage of Alfvén wave phase mixing
,”
Astron. Astrophys.
363
,
1186
1194
(
2000
).
6.
J. A.
McLaughlin
,
I. D.
Moortel
, and
A. W.
Hood
, “
Phase mixing of nonlinear visco-resistive Alfvén waves
,”
Astron. Astrophys.
527
,
A149
(
2011
).
7.
B.
Roberts
, “
Wave propagation in a magnetically structured atmosphere
,”
Sol. Phys.
69
,
27
38
(
1981
).
8.
L. D.
Landau
and
E. M.
Lifshitz
, in
Electrodynamics in Continuous Media: Course of Theoretical Physics
(
Pergamon Press
,
New York
,
1960
), Vol.
VIII
, Sec. 52.
9.
R.
Chin
,
E.
Verwichte
,
G.
Rowlands
, and
V. M.
Nakariakov
, “
Self-organization of magnetoacoustic waves in a thermal unstable environment
,”
Phys. Plasmas
17
,
032107
(
2010
).
10.
N. S.
Bakhvalov
,
Y. M.
Zhileikin
, and
E. A.
Zabolotskaya
,
Nonlinear Theory of Sound Beams
(
American Institute of Physics
,
New York
,
1987
).
11.
M.
Hamilton
and
D.
Blackstock
,
Nonlinear Acoustics
(
Academic Press
,
New York
,
1998
).
12.
A. K.
Singh
and
S.
Chandra
, “
Second harmonic generation in high density plasma
,”
Afr. Rev. Phys.
12
,
84
89
(
2017
).
13.
S.
Chandra
,
J.
Sarkar
,
C.
Das
, and
B.
Ghosh
, “
Self-interacting stationary formations in plasmas under externally controlled fields
,”
Plasma Phys. Rep.
47
(
3
),
306
317
(
2021
).
14.
V. M.
Nakariakov
,
C. A.
Mendoza-Briceńo
, and
M. H.
Ibáńez
, “
Magnetoacoustic waves of small amplitude in optically thin quasi-isentropic plasmas
,”
Astrophys. J.
528
,
767
775
(
2000
).
15.
I.
Ballai
, “
Nonlinear waves in solar plasmas—A review
,”
J. Phys.: Conf. Ser.
44
,
20
29
(
2006
).
16.
C. A.
Mendoza-Briceño
,
M. H.
Ibáñez
, and
V. M.
Nakariakov
, “
Nonlinear magneto-acoustic waves in the solar atmosphere
,”
Dyn. Atmos. Oceans
34
(
2–4
),
399
409
(
2001
).
17.
M.
Hamilton
,
V. A.
Khokhlova
, and
O. V.
Rudenko
, “
Analytical method for describing the paraxial region of finite amplitude sound beams
,”
J. Acoust. Soc. Am.
101
(
3
),
1298
1308
(
1997
).
18.
A.
Perelomova
, “
On description of periodic magnetosonic perturbations in a quasi-isentropic plasma with mechanical and thermal losses and electrical resistivity
,”
Phys. Plasmas
27
,
032110
(
2020
).
19.
M.
Kumar
,
P.
Kumar
, and
S.
Singh
, “
Coronal heating by the waves
,”
Astron. Astrophys.
453
,
1067
1078
(
2006
).
20.
D. Y.
Kolotkov
,
V. M.
Nakariakov
, and
D. I.
Zavershinskii
, “
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
,”
Astron. Astrophys.
628
,
A133
(
2019
).
21.
D. I.
Zavershinskii
,
D. Y.
Kolotkov
,
V. M.
Nakariakov
,
N. E.
Molevich
, and
D. S.
Ryashchikov
, “
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
,”
Astron. Astrophys.
26
(
8
),
082113
(
2019
).
22.
V. A.
Assman
,
F. V.
Bunkin
,
A. B.
Vernik
,
G. A.
Lyakhov
, and
K. F.
Shipilov
, “
Observation of thermal self-effect of a sound beam in a liquid
,”
JETP Lett.
41
(
4
),
182
184
(
1985
).
23.
V. G.
Andreev
,
A. A.
Karabutov
,
O. V.
Rudenko
, and
O. A.
Sapozhnikov
, “
Observation of self-focusing of sound
,”
JETP Lett.
41
,
466
469
(
1985
).
24.
R. Y.
Chiao
,
E.
Garmire
, and
C. H.
Townes
, “
Self-trapping of optical beams
,”
Phys. Rev. Lett.
13
(
15
),
479
482
(
1964
).
25.
V. I.
Talanov
, “
Propagation of a short electromagnetic pulse in an active medium
,”
Radio Phys.
7
(
3
),
144
151
(
1964
).
26.
A.
Perelomova
, “
Hysteresis curves for some periodic and aperiodic perturbations in magnetosonic flow
,”
Phys. Plasmas
27
,
102101
(
2020
).
27.
O. V.
Rudenko
and
O. A.
Sapozhnikov
, “
Self-action effects for wave beams containing shock fronts
,”
Phys.-Usp.
174
(
9
),
973
989
(
2004
).
28.
R. V.
Khokhlov
, “
To the theory of shock radiowaves in nonlinear lines
,”
Sov. Phys.-Radiotech. Electron.
6
(
6
),
917
(
1961
).
29.
S.
Leble
and
A.
Perelomova
,
The Dynamical Projectors Method: Hydro and Electrodynamics
(
CRC Press
,
2018
).
30.
R.
Shyam
,
V. D.
Sharma
, and
J.
Sharma
, “
Growth and decay of weak waves in radiative magnetogasdynamics
,”
AIAA J.
19
(
9
),
1246
1248
(
1981
).
31.
A. I.
Osipov
and
A. V.
Uvarov
, “
Kinetic and gasdynamic processes in nonequilibrium molecular physics
,”
Sov. Phys. Usp.
35
(
11
),
903
923
(
1992
).
32.
N. E.
Molevich
, “
Sound amplification in inhomogeneous flows of nonequilibrium gas
,”
Acoust. Phys.
47
(
1
),
102
105
(
2001
).
33.
N. E.
Molevich
, “
Amplification of vortex and temperature waves in the process of induced scattering of sound in thermodynamically nonequilibrium media
,”
High Temp.
39
(
6
),
884
888
(
2001
).
34.
A.
Perelomova
, “
Interaction of acoustic and thermal modes in the vibrationally relaxing gases. Acoustic cooling
,”
Acta Phys. Pol., A
123
(
4
),
681
687
(
2013
).
35.
A.
Perelomova
, “
Interaction of acoustic and thermal modes in the gas with nonequilibrium chemical reactions. Possibilities of acoustic cooling
,”
Acta Acust. Acust.
96
,
43
48
(
2010
).
36.
A.
Perelomova
, “
Magnetoacoustic heating in a quasi-isentropic magnetic gas
,”
Phys. Plasmas
25
,
042116
(
2018
).
You do not currently have access to this content.