This work shows a comparative study of a change in properties of plasma-activated water (PAW) when prepared by using two different dielectric barrier discharge (DBD) configurations named a pencil plasma jet (PPJ) and a plasma device (PD). The air plasma produced from the DBD-PPJ and DBD-PD is characterized by voltage-current characteristics, and plasma species/radicals are identified using optical emission spectroscopy. Moreover, the present work emphasizes the trapping of reactive species (O3, NOx, etc.) carried by post-discharge residual gases during PAW production. The trapping of these gases' reactive species is carried out in water, which provides a useful by-product named plasma processed water (PPW). The results revealed a higher concentration of reactive oxygen species (dissolved O3 and H2O2) and a lower concentration of reactive nitrogen species (NO3 and NO2 ions) in PAW prepared by the DBD-PPJ configuration compared to the DBD-PD configuration. The trapping of reactive species (O3 and NOx) present in post-discharge residual gases is confirmed by determining the change in physicochemical properties and reactive oxygen–nitrogen species (RONS) concentration in virgin water used as a trapping medium. The high concentration of RONS in PPW showed a high concentration of reactive species in post-discharge residual gases and vice versa. Therefore, the reduction in reactive species downstream of post-discharge residual gases is shown by a substantial decrease in the concentration of RONS and physicochemical properties of PPW. Thus, PAW and PPW (by-product) prepared in this work could be used for multiple applications such as microbial inactivation, food preservation, and agriculture.

1.
L.
Sivachandiran
and
A.
Khacef
,
RSC Adv.
7
,
1822
(
2017
).
2.
S.
Wu
,
B.
Thapa
,
C.
Rivera
, and
Y.
Yuan
,
J. Environ. Chem. Eng.
9
,
104761
(
2021
).
3.
V.
Rathore
,
D.
Patel
,
S.
Butani
, and
S. K.
Nema
,
Plasma Chem. Plasma Process.
41
,
871
(
2021
).
4.
V.
Rathore
,
D.
Patel
,
N.
Shah
,
S.
Butani
,
H.
Pansuriya
, and
S. K.
Nema
,
Plasma Chem. Plasma Process.
41
,
1397
(
2021
).
5.
L.
Ten Bosch
,
R.
Köhler
,
R.
Ortmann
,
S.
Wieneke
, and
W.
Viöl
,
Int. J. Environ. Res. Public Health
14
,
1460
(
2017
).
6.
Z.
Hongzhuan
,
T.
Ying
,
S.
Xia
,
G.
Jinsong
,
Z.
Zhenhua
,
J.
Beiyu
,
C.
Yanyan
,
L.
Lulu
,
Z.
Jue
, and
Y.
Bing
,
Appl. Microbiol. Biotechnol.
104
,
107
(
2020
).
7.
X.
Liao
,
Y.
Su
,
D.
Liu
,
S.
Chen
,
Y.
Hu
,
X.
Ye
,
J.
Wang
, and
T.
Ding
,
Food Control
94
,
307
(
2018
).
8.
P. G.
Subramanian
,
A.
Jain
,
A. M.
Shivapuji
,
N. R.
Sundaresan
,
S.
Dasappa
, and
L.
Rao
,
Plasma Process. Polym.
17
,
1900260
(
2020
).
9.
V.
Rathore
and
S. K.
Nema
,
J. Appl. Phys.
129
,
084901
(
2021
).
10.
V.
Rathore
,
B. S.
Tiwari
, and
S. K.
Nema
,
Plasma Chem. Plasma Process.
42
,
109
(
2022
).
11.
Q.
Xiang
,
R.
Zhang
,
L.
Fan
,
Y.
Ma
,
D.
Wu
,
K.
Li
, and
Y.
Bai
,
LWT
126
,
109336
(
2020
).
12.
X.
Liao
,
Q.
Xiang
,
P. J.
Cullen
,
Y.
Su
,
S.
Chen
,
X.
Ye
,
D.
Liu
, and
T.
Ding
,
LWT
117
,
108649
(
2020
).
13.
M.
Andrasch
,
J.
Stachowiak
,
O.
Schlüter
,
U.
Schnabel
, and
J.
Ehlbeck
,
Food Packag. Shelf Life
14
,
40
(
2017
).
14.
U.
Schnabel
,
R.
Niquet
,
C.
Schmidt
,
J.
Stachowiak
,
O.
Schlüter
,
M.
Andrasch
, and
J.
Ehlbeck
,
Int. J. Environ. Agric. Res
2
,
212
(
2016
).
15.
P.
Lu
,
D.
Boehm
,
P.
Bourke
, and
P. J.
Cullen
,
Plasma Process. Polym.
14
,
1600207
(
2017
).
16.
I.-E.
Vlad
and
S. D.
Anghel
,
J. Electrostat.
87
,
284
(
2017
).
17.
Y. S.
Jin
,
C.
Cho
,
D.
Kim
,
C. H.
Sohn
,
C.-S.
Ha
, and
S.-T.
Han
,
Jpn. J. Appl. Phys., Part 1
59
,
SHHF05
(
2020
).
18.
Y.
Tian
,
R.
Ma
,
Q.
Zhang
,
H.
Feng
,
Y.
Liang
,
J.
Zhang
, and
J.
Fang
,
Plasma Process. Polym.
12
,
439
(
2015
).
19.
P.
Lukes
,
E.
Dolezalova
,
I.
Sisrova
, and
M.
Clupek
,
Plasma Sources Sci. Technol.
23
,
015019
(
2014
).
20.
N. C.
Roy
,
C.
Pattyn
,
A.
Remy
,
N.
Maira
, and
F.
Reniers
,
Plasma Process. Polym.
18
,
2000087
(
2021
).
21.
B.
Tarabová
,
P.
Lukeš
,
M.
Janda
,
K.
Hensel
,
L.
Šikurová
, and
Z.
Machala
,
Plasma Process. Polym.
15
,
1800030
(
2018
).
22.
M.
Janda
,
V.
Martišovitš
,
K.
Hensel
, and
Z.
Machala
,
Plasma Chem. Plasma Process.
36
,
767
(
2016
).
23.
M.
Pavlovich
,
T.
Ono
,
C.
Galleher
,
B.
Curtis
,
D.
Clark
,
Z.
Machala
, and
D.
Graves
,
J. Phys. D
47
,
505202
(
2014
).
24.
T.
Kim
,
S.
Song
,
J.
Kim
, and
R.
Iwasaki
,
Jpn. J. Appl. Phys., Part 1
49
,
126201
(
2010
).
25.
J. J.
Zhang
,
Y.
Wei
, and
Z.
Fang
,
Front. Immunol.
10
,
2518
(
2019
).
26.
P. N.
Magee
,
Ambio
6
,
123–125
(
1977
).
27.
U.
Schnabel
,
K.
Yarova
,
B.
Zessin
,
J.
Stachowiak
, and
J.
Ehlbeck
,
Appl. Sci.
10
,
3303
(
2020
).
28.
A.
Ozkan
,
T.
Dufour
,
A.
Bogaerts
, and
F.
Reniers
,
Plasma Sources Sci. Technol.
25
,
045016
(
2016
).
29.
Z.
Fang
,
X.
Xie
,
J.
Li
,
H.
Yang
,
Y.
Qiu
, and
E.
Kuffel
,
J. Phys. D
42
,
085204
(
2009
).
30.
D.
Shemansky
and
A.
Broadfoot
,
J. Quant. Spectrosc. Radiat. Transfer
11
,
1385
(
1971
).
31.
R. J.
Wandell
,
H.
Wang
,
R. K.
Bulusu
,
R. O.
Gallan
, and
B. R.
Locke
,
Plasma Chem. Plasma Process.
39
,
643
(
2019
).
32.
H.
Sies
,
EJB Rev.
1993
,
101
(
1994
).
33.
A.
Streng
,
J. Chem. Eng. Data
6
,
431
(
1961
).

Supplementary Material

You do not currently have access to this content.