We develop a new self-consistent model for simulation of the electron–cyclotron maser interaction in cylindrical structures, where expansion of the fields in transverse eigenmodes cannot be directly applied. Instead of solving the nonhomogeneous equation for the fields as a differential equation, a different approach is followed. First, the Green's function for elementary azimuthal and radial RF current sources is analytically derived by expanding the fields in longitudinal modes. Then, the total generated field is calculated by representing the perturbed electron beam as a sum of elementary RF current sources along the axis with amplitude coefficients that are found from the kinematic quantities of the electrons. The self-consistent stationary solution is found by solving the equations of motion along with the field equation in an iterative procedure. The model is useful for the full-wave simulation of lossy structures, which are frequently found in gyro-devices, such as ceramic-loaded interaction circuits of gyro-traveling-wave tubes and beam tunnels of gyrotron oscillators.

1.
K. R.
Chu
, “
The electron cyclotron maser
,”
Rev. Mod. Phys.
76
,
489
540
(
2004
).
2.
M.
Thumm
, “
Recent advances in the worldwide fusion gyrotron development
,”
IEEE Trans. Plasma Sci.
42
,
590
599
(
2014
).
3.
E. A.
Nanni
,
A. B.
Barnes
,
R. G.
Griffin
, and
R. J.
Temkin
, “
THz dynamic nuclear polarization NMR
,”
IEEE Trans. Terahertz Sci. Technol.
1
,
145
163
(
2011
).
4.
T.
Idehara
,
S. P.
Sabchevski
,
M.
Glyavin
, and
S.
Mitsudo
, “
The gyrotrons as promising radiation sources for THz sensing and imaging
,”
Appl. Sci.
10
,
980
(
2020
).
5.
S.
Kutsaev
,
B.
Jacobson
,
A.
Smirnov
,
T.
Campese
,
V.
Dolgashev
,
V.
Goncharik
,
M.
Harrison
,
A.
Murokh
,
E.
Nanni
,
J.
Picard
,
M.
Ruelas
, and
S.
Schaub
, “
Nanosecond RF-power switch for gyrotron-driven millimeter-wave accelerators
,”
Phys. Rev. Appl.
11
,
034052
(
2019
).
6.
A. W.
Fliflet
,
M. E.
Read
,
K. R.
Chu
, and
R.
Seeley
, “
A self-consistent field theory for gyrotron oscillators: Application to a low Q gyromonotron
,”
Int. J. Electron.
53
,
505
521
(
1982
).
7.
A. K.
Ganguly
and
S.
Ahn
, “
Self-consistent large signal theory of the gyrotron travelling wave amplifier
,”
Int. J. Electron.
53
,
641
658
(
1982
).
8.
M.
Botton
,
T. M.
Antonsen
,
B.
Levush
,
K. T.
Nguyen
, and
A. N.
Vlasov
, “
MAGY: A time-dependent code for simulation of slow and fast microwave sources
,”
IEEE Trans. Plasma Sci.
26
,
882
892
(
1998
).
9.
M. A.
Moiseev
,
L. L.
Nemirovskaya
,
V.
Zapevalov
, and
N. A.
Zavolsky
, “
Numerical simulation of mode interaction in 170 GHz/1 MW gyrotrons for ITER
,”
J. Infrared Millimeter Terahertz Waves
18
,
2117
2128
(
1997
).
10.
K. A.
Avramides
,
I. G.
Pagonakis
,
C. T.
Iatrou
, and
J. L.
Vomvoridis
, “
EURIDICE: A code-package for gyrotron interaction simulations and cavity design
,”
EPJ Web Conf.
32
,
04016
(
2012
).
11.
S.
Alberti
,
T. M.
Tran
,
K. A.
Avramides
,
F.
Li
, and
J.-P.
Hogge
, “
Gyrotron parasitic-effects studies using the time-dependent self-consistent monomode code TWANG
,” in
Proceedings of the 36th International Conference on Infrared, Millimeter, and Terahertz Waves
,
Houston, TX
(
2011
).
12.
S.
Kern
, “
Numerical codes for interaction calculations in gyrotron cavities at FZK
,” in
Proceedings of the 21st International Conference on Infrared and Millimeter Waves
, edited by
M.
von Ortenberg
and
H.-U.
Mueller
(Humboldt University Press,
Berlin
,
Federal Republic of Germany
,
1996
).
13.
P.
Wang
,
X.
Chen
,
H.
Xiao
,
O.
Dumbrajs
,
X.
Qi
, and
L.
Li
, “
GYROCOMPU: Toolbox designed for the analysis of gyrotron resonators
,”
IEEE Trans. Plasma Sci.
48
,
3007
3016
(
2020
).
14.
J. P.
Calame
,
M.
Garven
,
B. G.
Danly
,
B.
Levush
, and
K. T.
Nguyen
, “
Gyrotron-traveling wave-tube circuits based on lossy ceramics
,”
IEEE Trans. Electron Devices
49
,
1469
1477
(
2002
).
15.
C. H.
Du
and
P. K.
Liu
,
Millimeter-Wave Gyrotron Traveling-Wave Tube Amplifiers
(
Springer
,
Berlin, Germany
,
2014
).
16.
Z. C.
Ioannidis
,
I.
Chelis
,
G.
Gantenbein
,
T.
Rzesnicki
, and
J.
Jelonnek
, “
Experimental classification and enhanced suppression of parasitic oscillations in gyrotron beam tunnels
,”
IEEE Trans. Electron Devices
67
,
5783
5789
(
2020
).
17.
B.
Levush
,
M.
Blank
,
J.
Calame
,
B.
Danly
,
K.
Nguyen
,
D.
Pershing
,
S.
Cooke
,
P.
Latham
,
J.
Petillo
, and
T.
Antonsen
, “
Modeling and design of millimeter wave gyroklystrons
,”
Phys. Plasmas
6
,
2233
2240
(
1999
).
18.
M.
Blank
,
B.
Danly
, and
B.
Levush
, “
Experimental demonstration of a W-band (94 GHz) gyrotwystron amplifier
,”
IEEE Trans. Plasma Sci.
27
,
405
411
(
1999
).
19.
C. H.
Du
,
Z. D.
Li
,
Z. H.
Xue
,
P. K.
Liu
,
Q. Z.
Xue
,
S. C.
Zhang
,
S. X.
Xu
,
Z. H.
Geng
,
W.
Gu
,
Y. N.
Su
, and
G. F.
Liu
, “
Research on the mode competition in a W-band lossy ceramic-loaded gyrotron backward-wave oscillator
,”
Acta Phys. Sin.
61
,
070703
(
2012
).
20.
C. T. M.
Chang
and
J. W.
Dawson
, “
Propagation of electromagnetic waves in a partially dielectric filled circular waveguide
,”
J. Appl. Phys.
41
,
4493
4500
(
1970
).
21.
S. Y.
Park
and
J. L.
Hirshfield
, “
Theory of wakefields in a dielectric-lined waveguide
,”
Phys. Rev. E
62
,
1266
1283
(
2000
).
22.
J.
Yu
,
T. M.
Antonsen
, and
G. S.
Nusinovich
, “
Excitation of backward waves in beam tunnels of high-power gyrotrons
,”
IEEE Trans. Plasma Sci.
38
,
1193
1199
(
2010
).
23.
K. R.
Chu
,
L. R.
Barnett
,
H. Y.
Chen
,
S. H.
Chen
,
C.
Wang
,
Y. S.
Yeh
,
Y. C.
Tsai
,
T. T.
Yang
, and
T. Y.
Dawn
, “
Stabilization of absolute instabilities in the gyrotron traveling wave amplifier
,”
Phys. Rev. Lett.
74
,
1103
1106
(
1995
).
24.
J.
Genoud
,
S.
Alberti
,
T. M.
Tran
,
G. L.
Bars
,
P.
Kaminski
,
J.-P.
Hogge
,
K. A.
Avramidis
, and
M. Q.
Tran
, “
Parasitic oscillations in smooth-wall circular symmetric gyrotron beam ducts
,”
J. Infrared Millimeter Terahertz Waves
40
,
131
149
(
2019
).
25.
J.
Genoud
,
S.
Alberti
,
J.-P.
Hogge
,
I. G.
Tigelis
,
G. P.
Latsas
, and
I. G.
Chelis
, “
Modeling of parasitic oscillations in smooth-wall circular symmetric dielectric-loaded gyrotron beam ducts
,”
Phys. Plasmas
26
,
123108
(
2019
).
26.
A. N.
Vlasov
and
T. M.
Antonsen
, “
Numerical solution of fields in lossy structures using MAGY
,”
IEEE Trans. Electron Devices
48
,
45
55
(
2001
).
27.
I. G.
Chelis
,
K. A.
Avramidis
,
Z. C.
Ioannidis
, and
I. G.
Tigelis
, “
Improved suppression of parasitic oscillations in gyrotron beam tunnels by proper selection of the lossy ceramic material
,”
IEEE Trans. Electron Devices
65
,
2301
2307
(
2018
).
28.
I. G.
Chelis
,
K. A.
Avramidis
, and
J. L.
Vomvoridis
, “
Resonant modes of disk-loaded cylindrical structures with open boundaries
,”
IEEE Trans. Microwave Theory Tech.
63
,
1781
1790
(
2015
).
29.
I. G.
Tigelis
,
J. L.
Vomvoridis
, and
S.
Tzima
, “
High-frequency electromagnetic modes in a dielectric-ring loaded beam tunnel
,”
IEEE Trans. Plasma Sci.
26
,
922
930
(
1998
).
30.
A. K.
Ganguly
,
A. W.
Fliflet
, and
A. H.
McCurdy
, “
Theory of multicavity gyrolystron amplifier based on a Green's function approach
,”
IEEE Trans. Plasma Sci.
13
,
409
416
(
1985
).
31.
L.
Schächter
and
J. A.
Nation
, “
Propagation of electromagnetic and space–charge waves in quasiperiodic structures
,”
Phys. Plasmas
2
,
889
901
(
1995
).
32.
G. P.
Latsas
,
J. L.
Vomvoridis
,
K. A.
Avramides
, and
I. G.
Tigelis
, “
Beam–wave interaction in corrugated structures in the small-signal regime
,”
IEEE Trans. Plasma Sci.
37
,
2020
2030
(
2009
).
33.
Z.
Ioannidis
,
S.
Mallios
,
I. D.
Paraskevopoulos
, and
I. G.
Tigelis
, “
Axisymmetric waves in re-entrant cavities
,”
Radiophys. Quantum Electron.
46
,
860
867
(
2003
).
34.
I. G.
Tigelis
,
J.-Y.
Raguin
,
Z. C.
Ioannidis
,
G. P.
Latsas
, and
A. J.
Amditis
, “
Dispersion characteristics of arbitrary periodic structures with rectangular grooves
,”
J. Infrared Millimeter Terahertz Waves
29
,
432
442
(
2008
).
35.
S. A.
Mallios
,
G. P.
Latsas
, and
I. G.
Tigelis
, “
TE waves in arbitrary periodic slow-wave structures with rectangular grooves
,”
J. Infrared Millimeter Terahertz Waves
30
,
1113
1122
(
2009
).
36.
J.
van Bladel
,
Singular Electromagnetic Fields and Sources
(
Clarendon Press
,
Oxford
,
1991
).
37.
C. H.
Du
and
P. K.
Liu
, “
Nonlinear full-wave-interaction analysis of a gyrotron-traveling-wave-tube amplifier based on a lossy dielectric-lined circuit
,”
Phys. Plasmas
17
,
033104
(
2010
).
38.
M.
Garven
,
J.
Calame
,
B.
Danly
,
K.
Nguyen
,
B.
Levush
,
F.
Wood
, and
D.
Pershing
, “
A gyrotron-traveling-wave tube amplifier experiment with a ceramic loaded interaction region
,”
IEEE Trans. Plasma Sci.
30
,
885
893
(
2002
).
39.
C. H.
Du
and
P. K.
Liu
, “
Stability study of a gyrotron-traveling-wave amplifier based on a lossy dielectric-loaded mode-selective circuit
,”
Phys. Plasmas
16
,
073104
(
2009
).
You do not currently have access to this content.