The fluid Taylor scale is measured in the Bryn Mawr Experiment (BMX) of the Bryn Mawr Plasma Laboratory and examined as a potential dissipation scale of magnetic turbulence within the plasma. We present the first laboratory measurements of the Taylor scale of a turbulent magnetized plasma through multi-point correlations of broadband magnetic fluctuations. From spatial and temporal correlations, respectively, the measured Taylor scales are 2±1 and 3±1cm. These measurements are on the same order of magnitude as estimated ion dissipation scales within the BMX plasma with ion inertial scales between 1and10cm and ion gyroscales between 0.1and1.0cm. From these measurements, a magnetic Reynolds number can be computed. Since Taylor scale values are determined using multi-point correlations and a Richardson extrapolation technique, an estimate of the magnetic Reynolds number can be found without the added complication of specifying a model of microscopic diffusivity, a parameter often difficult to obtain experimentally.

1.
G. K.
Batchelor
,
The Theory of Homogeneous Turbulence
, Cambridge Science Classics (
Cambridge University Press
,
1970
).
2.
U.
Frisch
,
Turbulence: The Legacy of A.N. Kolmogorov
(
Cambridge University Press
,
1995
).
3.
H.
Belmabrouk
and
M.
Michard
, “
Taylor length scale measurement by laser Doppler velocimetry
,”
Exp. Fluids
25
,
69
76
(
1998
).
4.
H.
Belmabrouk
, “
A theoretical investigation of the exactness of Taylor length scale estimates from two-point LDV
,”
Exp. Therm. Fluid Sci.
22
,
45
53
(
2000
).
5.
W. H.
Matthaeus
,
S.
Dasso
,
J. M.
Weygand
,
L. J.
Milano
,
C. W.
Smith
, and
M. G.
Kivelson
, “
Spatial correlation of solar-wind turbulence from two-point measurements
,”
Phys. Rev. Lett.
95
,
231101
(
2005
).
6.
J. M.
Weygand
,
W. H.
Matthaeus
,
S.
Dasso
,
M. G.
Kivelson
, and
R. J.
Walker
, “
Taylor scale and effective magnetic Reynolds number determination from plasma sheet and solar wind magnetic field fluctuations
,”
J. Geophys. Res.
112
,
A10201
, (
2007
).
7.
J. M.
Weygand
,
W. H.
Matthaeus
,
S.
Dasso
,
M. G.
Kivelson
,
L. M.
Kistler
, and
C.
Mouikis
, “
Anisotropy of the Taylor scale and the correlation scale in plasma sheet and solar wind magnetic field fluctuations
,”
J. Geophys. Res.
114
,
A07213
, (
2009
).
8.
J. M.
Weygand
,
W. H.
Matthaeus
,
M.
El-Alaoui
,
S.
Dasso
, and
M. G.
Kivelson
, “
Anisotropy of the Taylor scale and the correlation scale in plasma sheet magnetic field fluctuations as a function of auroral electrojet activity
,”
J. Geophys. Res.
115
,
A12250
, (
2010
).
9.
J. M.
Weygand
,
W. H.
Matthaeus
,
S.
Dasso
, and
M. G.
Kivelson
, “
Correlation and Taylor scale variability in the interplanetary magnetic field fluctuations as a function of solar wind speed
,”
J. Geophys. Res.
116
,
A08102
, (
2011
).
10.
R.
Bandyopadhyay
,
W. H.
Matthaeus
,
A.
Chasapis
,
C. T.
Russell
,
R. J.
Strangeway
,
R. B.
Torbert
,
B. L.
Giles
,
D. J.
Gershman
,
C. J.
Pollock
, and
J. L.
Burch
, “
Direct measurement of the solar-wind Taylor microscale using MMS turbulence campaign data
,”
Astrophys. J.
899
,
63
(
2020
).
11.
M. R.
Brown
and
D. A.
Schaffner
, “
Laboratory sources of turbulent plasma: A unique MHD plasma wind tunnel
,”
Plasma Sources Sci. Technol.
23
,
063001
(
2014
).
12.
D. A.
Schaffner
and
M. R.
Brown
, “
Multifractal and monofractal scaling in a laboratory magnetohydrodynamic turbulence experiment
,”
Astrophys. J.
811
,
61
(
2015
).
13.
D. A.
Schaffner
,
V. S.
Lukin
,
A.
Wan
, and
M. R.
Brown
, “
Turbulence analysis of an experimental flux-rope plasma
,”
Plasma Phys. Controlled Fusion
56
,
064003
(
2014
).
14.
D. A.
Schaffner
,
M. R.
Brown
, and
V. S.
Lukin
, “
Temporal and spatial turbulent spectra of MHD plasma and an observation of variance anisotropy
,”
Astrophys. J.
790
,
126
(
2014
).
15.
K. T.
Osman
,
W. H.
Matthaeus
,
J. T.
Gosling
,
A.
Greco
,
S.
Servidio
,
B.
Hnat
,
S. C.
Chapman
, and
T. D.
Phan
, “
Magnetic reconnection and intermittent turbulence in the solar wind
,”
Phys. Rev. Lett.
112
,
215002
(
2014
).
16.
K. G.
Klein
,
G. G.
Howes
,
J. M.
TenBarge
, and
F.
Valentini
, “
Diagnosing collisionless energy transfer using field–particle correlations: Alfvén-ion cyclotron turbulence
,”
J. Plasma Phys.
86
,
905860402
(
2020
).
17.
K. G.
Klein
,
G. G.
Howes
, and
J. M.
TenBarge
, “
Diagnosing collisionless energy transfer using field-particle correlations: Gyrokinetic turbulence
,”
J. Plasma Phys.
83
,
535830401
(
2017
).
18.
W. H.
Matthaeus
,
J. M.
Weygand
,
P.
Chuychai
,
S.
Dasso
,
C. W.
Smith
, and
M. G.
Kivelson
, “
Interplanetary magnetic Taylor microscale and implications for plasma dissipation
,”
Astrophys. J.
678
,
L141
L144
(
2008
).
19.
G. I.
Taylor
, “
Statistical theory of turbulenc
,”
Proc. R. Soc. A.
151
,
421
444
(
1935
).
20.
A.
Shalchi
, “
Perpendicular transport of energetic particles in magnetic turbulence
,”
Space Sci. Rev.
216
,
23
(
2020
).
21.
Y.
Kaneda
, “
Lagrangian and Eulerian time correlations in turbulence
,”
Phys. Fluids A
5
,
2835
2845
(
1993
).
22.
G. I.
Taylor
, “
The spectrum of turbulence
,”
Proc. R. Soc. A
164
,
476
490
(
1938
).
23.
C. G. R.
Geddes
,
T. W.
Kornack
, and
M. R.
Brown
, “
Scaling studies of spheromak formation and equilibrium
,”
Phys. Plasmas
5
,
1027
(
1997
).
24.
C. H. K.
Chen
, “
Recent progress in astrophysical plasma turbulence from solar wind observations
,”
J. Plasma Phys.
82
,
535820602
(
2016
).
25.
P.
Chuychai
,
J. M.
Weygand
,
W. H.
Matthaeus
,
S.
Dasso
,
C. W.
Smith
, and
M. G.
Kivelson
, “
Technique for measuring and correcting the Taylor microscale
,”
J. Geophys. Res.
119
,
4256
4265
, (
2014
).
26.
C. D.
Cothran
,
M. R.
Brown
,
T.
Gray
,
M. J.
Schaffer
, and
G.
Marklin
, “
observation of a helical self-organized state in a compact toroidal plasma
,”
Phys. Rev. Lett.
103
,
215002
(
2009
).
27.
T.
Gray
,
M. R.
Brown
, and
D.
Dandurand
, “
Observation of a relaxed plasma state in a quasi-infinite cylinder
,”
Phys. Rev. Lett.
110
,
085002
(
2013
).
28.
P. M.
Bellan
,
Spheromaks a Practical Application of Magnetohydrodynamic Dynamos and Plasma Self-Organization
(
Imperial College Press
,
London
,
2000
).
29.
K. J.
Burns
,
G. M.
Vasil
,
J. S.
Oishi
,
D.
Lecoanet
, and
B. P.
Brown
, “
Dedalus: A flexible framework for numerical simulations with spectral methods
,”
Phys. Rev. Res.
2
,
023068
(
2020
).
You do not currently have access to this content.