The accumulation of tungsten impurities measured in a KSTAR experiment was analyzed theoretically using a drift-kinetic code, NEO, to determine the contribution of neoclassical transport. According to the NEO simulation results, there is a certain value of impurity toroidal rotation speed maximizing the neoclassical inward convection. The inward convection decreases or the outward convection increases as the rotation increases only beyond the speed value. The non-monotonic dependency of the neoclassical convection on the rotation is analyzed by the several coefficients for many profile effects, including ion and electron profiles. The dependency of the coefficients for the main ion density gradient on the rotation is different from that for the temperature gradient, so it results in the amplification of the temperature screening beyond the certain value of the rotation. In the KSTAR case with high toroidal rotation of the tungsten (around Mach number 4.5), only in the mid-radius does the rotation reduce the inward impurity particle convection or change the inward convection to the outward convection. Thus, the rotation is a useful tool to control the impurity accumulation conditionally. The favorable condition occurs only for high rotation, which significantly depends on the radius and the collisionality due to the complicated non-monotonic dependency of the convection on the rotation speed.

1.
S.
Brezinsek
,
T.
Loarer
,
V.
Philipps
,
H. G.
Esser
,
S.
Grünhagen
,
R.
Smith
,
R.
Felton
,
J.
Banks
,
P.
Belo
,
A.
Boboc
 et al,
Nucl. Fusion
53
,
083023
(
2013
).
2.
R.
Neu
,
J.
Riesch
,
J. W.
Coenen
,
J.
Brinkmann
,
A.
Calvo
,
S.
Elgeti
,
C.
García-Rosales
,
H.
Greuner
,
T.
Hoeschen
,
G.
Holzner
 et al,
Fusion Eng. Des.
109–111
,
1046
1052
(
2016
).
3.
R. A.
Pitts
,
S.
Carpentier
,
F.
Escourbiac
,
T.
Hirai
,
V.
Komarov
,
S.
Lisgo
,
A. S.
Kukushkin
,
A.
Loarte
,
M.
Merola
,
A.
Sashala Naik
 et al,
J. Nucl. Mater.
438
,
S48
S56
(
2013
).
4.
V.
Philipps
,
J. Nucl. Mater.
415
,
S2
S9
(
2011
).
5.
R.
Neu
,
G.
Arnoux
,
M.
Beurskens
,
V.
Bobkov
,
S.
Brezinsek
,
J.
Bucalossi
,
G.
Calabro
,
C.
Challis
,
J. W.
Coenen
,
E.
de la Luna
 et al,
Phys. Plasmas
20
,
056111
(
2013
).
6.
R.
Neu
,
A.
Kallenbach
,
M.
Balden
,
V.
Bobkov
,
J. W.
Coenen
,
R.
Drube
,
R.
Dux
,
H.
Greuner
,
A.
Herrmann
,
J.
Hobirk
 et al,
J. Nucl. Mater.
438
,
S34
S41
(
2013
).
7.
C.
Angioni
,
F. J.
Casson
,
P.
Mantica
,
T.
Pütterich
,
M.
Valisa
,
E. A.
Belli
,
R.
Bilato
,
C.
Giroud
,
P.
Helander
, and
JET Contributors,
Phys. Plasmas
22
,
055902
(
2015
).
8.
F. J.
Casson
,
C.
Angioni
,
E. A.
Belli
,
R.
Bilato
,
P.
Mantica
,
T.
Odstrcil
,
T.
Pütterich
,
M.
Valisa
,
L.
Garzotti
,
C.
Giroud
 et al,
Plasma Phys. Controlled Fusion
57
,
014031
(
2015
).
9.
N.
Fedorczak
,
P.
Monier-Garbet
,
T.
Pütterich
,
S.
Brezinsek
,
P.
Devynck
,
R.
Dumont
,
M.
Goniche
,
E.
Joffrin
,
E.
Lerche
,
B.
Lipschultz
 et al,
J. Nucl. Mater.
463
,
85
(
2015
).
10.
M.
Valisa
,
L.
Carraro
,
I.
Predebon
,
M. E.
Puiatti
,
C.
Angioni
,
I.
Coffey
,
C.
Giroud
,
L.
Lauro Taroni
,
B.
Alper
,
M.
Baruzzo
 et al,
Nucl. Fusion
51
,
033002
(
2011
).
11.
M.
Sertoli
,
C.
Angioni
,
T.
Odstrcil
,
ASDEX Upgrade Team, and EUROFusion MST1 Team,
Phys. Plasmas
24
,
112503
(
2017
).
12.
C.
Angioni
,
M.
Sertoli
,
R.
Bilato
,
V.
Bobkov
,
A.
Loarte
,
R.
Ochoukov
,
T.
Odstrčil
,
T.
Pütterich
,
J.
Stober
, and
ASDEX Upgrade Team,
Nucl. Fusion
57
,
056015
(
2017
).
13.
T.
Odstrčil
,
N. T.
Howard
,
F.
Sciortino
,
C.
Chrystal
,
C.
Holland
,
E.
Hollmann
,
G.
McKee
,
K. E.
Thome
, and
T. M.
Wilks
,
Phys. Plasmas
27
,
082503
(
2020
).
14.
T.
Odstrčil
,
T.
Pütterich
,
C.
Angioni
,
R.
Bilato
,
A.
Gude
,
M.
Odstrcil
,
ASDEX Upgrade Team, and EUROfusion MST1 Team,
Plasma Phys. Controlled Fusion
60
,
014003
(
2018
).
15.
C.
Angioni
,
Plasma Phys. Controlled Fusion
63
,
078001
(
2021
).
16.
S. P.
Hirshman
and
D. J.
Sigmar
,
Nucl. Fusion
21
,
1079
(
1981
).
17.
F. L.
Hinton
and
R. D.
Hazeltine
,
Rev. Mod. Phys.
48
,
239
(
1976
).
18.
T.
Fulöp
and
P.
Helander
,
Phys. Plasmas
6
,
3066
(
1999
).
19.
A. G.
Peeters
,
Phys. Plasmas
7
,
268
(
2000
).
20.
S. K.
Wong
,
Phys. Fluids
30
,
818
(
1987
).
21.
C.
Angioni
,
P.
Mantica
,
T.
Pütterich
,
M.
Valisa
,
M.
Baruzzo
,
E. A.
Belli
,
P.
Belo
,
F. J.
Casson
,
C.
Challis
,
P.
Drewelow
 et al,
Nucl. Fusion
54
,
083028
(
2014
).
22.
E. A.
Belli
and
J.
Candy
,
Plasma Phys. Controlled Fusion
50
,
095010
(
2008
).
23.
E. A.
Belli
and
J.
Candy
,
Plasma Phys. Controlled Fusion
51
,
075018
(
2009
).
24.
E. A.
Belli
,
J.
Candy
, and
C.
Angioni
,
Plasma Phys. Controlled Fusion
56
,
124002
(
2014
).
25.
C.
Angioni
and
P.
Helander
,
Plasma Phys. Controlled Fusion
56
,
124001
(
2014
).
26.
C.
Angioni
,
R.
Bilato
,
F. J.
Casson
,
E.
Fable
,
P.
Mantica
,
T.
Odstrcil
,
M.
Valisa
,
ASDEX Upgrade Team, and JET Contributors,
Nucl. Fusion
57
,
022009
(
2017
).
27.
P.
Maget
,
P.
Manas
,
J.
Frank
,
T.
Nicolas
,
O.
Agullo
, and
X.
Garbet
,
Plasma Phys. Controlled Fusion
62
,
105001
(
2020
).
28.
I.
Song
,
Y. S.
Han
, and
W.
Choe
,
Nucl. Fusion
60
,
036013
(
2020
).
29.
M. F. F.
Nave
,
J.
Rapp
,
T.
Bolzonella
,
R.
Dux
,
M. J.
Mantsinen
,
R.
Budny
,
P.
Dumortier
,
M. von
Hellermann
,
S.
Jachmich
,
H. R.
Koslowski
 et al,
Nucl. Fusion
43
,
1204
(
2003
).
30.
T. C.
Hender
,
P.
Buratti
,
F. J.
Casson
,
B.
Alper
,
Y. F.
Baranov
,
M.
Baruzzo
,
C. D.
Challis
,
F.
Koechi
,
K. D.
Lawson
,
C.
Marchetto
 et al,
Nucl. Fusion
56
,
066002
(
2016
).
31.
D.
Estève
,
Y.
Sarazin
,
X.
Garbet
,
V.
Grandgirard
,
S.
Breton
,
P.
Donnel
,
Y.
Asahi
,
C.
Bourdelle
,
G.
Dif-Pradalier
,
C.
Ehrlacher
 et al,
Nucl. Fusion
58
,
036013
(
2018
).
32.
P.
Donnel
,
X.
Garbet
,
Y.
Sarazin
,
V.
Grandgirard
,
N.
Bouzat
,
E.
Caschera
,
G.
Dif-Pradalier
,
P.
Ghendrih
,
C.
Gillot
,
G.
Latu
 et al,
Plasma Phys. Controlled Fusion
61
,
044006
(
2019
).
33.
K.
Lim
,
X.
Garbet
,
Y.
Sarazin
,
V.
Grandgirard
,
K.
Obrejan
,
M.
Lesur
, and
E.
Gravier
,
Nucl. Fusion
61
,
046037
(
2021
).
34.
M.
Landreman
,
F. I.
Parra
,
P. J.
Catto
,
D. R.
Ernst
, and
I.
Pusztai
,
Plasma Phys. Controlled Fusion
56
,
045005
(
2014
).
35.
H. Y.
Lee
,
S.-H.
Hong
,
J.
Hong
,
S. H.
Lee
,
S.
Jang
,
J.
Jang
,
T.
Jeon
,
J. S.
Park
, and
W.
Choe
,
Rev. Sci. Instrum.
85
,
11D862
(
2014
).
36.
A.
Autricque
,
S. H.
Hong
,
N.
Fedorczak
,
S. H.
Son
,
H. Y.
Lee
,
I.
Song
,
W.
Choe
, and
C.
Grisolia
,
Nucl. Mater. Energy
12
,
599
604
(
2017
).
37.
I.
Song
,
C. R.
Seon
,
J.
Hong
,
Y. H.
An
,
R.
Barnsley
,
R.
Guirlet
, and
W.
Choe
,
Rev. Sci. Instrum.
88
,
093509
(
2017
).
38.
T.
Parisot
,
R.
Guirlet
,
C.
Bourdelle
,
X.
Garbet
,
N.
Dubuit
,
F.
Imbeaux
, and
P. R.
Thomas
,
Plasma Phys. Controlled Fusion
50
,
055010
(
2008
).
39.
K.
Behringer
, “
Description of the impurity transport code (STRAHL)
,”
Report No. jet-R-87-08
(
1987
).
40.
R.
Dux
, “
Lab ‘STRAHL user manual’ IPP
,”
Report No. 10/30
(
Max-Planck-Institut fuer Plasmaphysik
,
2006
).
41.
R. L.
Miller
,
M. S.
Chu
,
J. M.
Greene
,
Y. R.
Lin-Liu
, and
R. E.
Waltz
,
Phys. Plasmas
5
,
973
(
1998
).
42.
J.
Breslau
,
M.
Gorelenkova
,
F.
Poli
,
J.
Sachdev
,
A.
Pankin
,
G.
Perumpilly
, and
USDOE Office of Science
TRANSP [computer software] (2018); available at, .
43.
S.
Breton
,
F. J.
Casson
,
C.
Bourdelle
,
C.
Angioni
,
E.
Belli
,
Y.
Camenen
,
J.
Critrin
,
X.
Garbet
,
Y.
Sarazin
,
M.
Sertoli
 et al,
Phys. Plasmas
25
,
012303
(
2018
).
You do not currently have access to this content.