A one-dimensional particle-in-cell Monte Carlo collisions method has been used to model the development and propagation of ionization waves in neon and argon positive columns. Low-current conditions are considered, that is, conditions where stepwise ionization or Coulomb collisions are negligible (linear ionization rate). This self-consistent model describes the development of self-excited moving striations, reproduces many of the well-known experimental characteristics (wavelength, spatial resonances, potential drop over one striation, and electron “bunching” effect) of the ionization waves called p, r, and s waves in the literature, and sheds light on their physical properties and on the mechanisms responsible for their existence. These are the first fully kinetic self-consistent simulations over a large range of conditions reproducing the development of p, r, and s ionization waves. Although the spatial resonances and the detailed properties of the striations in the nonlinear regime are of kinetic nature, the conditions of existence of the instability can be obtained and understood from a linear stability analysis of a three-moment set of quasi-neutral fluid equations where the electron transport coefficients are expressed as a function of electron temperature and are obtained from solutions of a 0D Boltzmann equation. An essential aspect of the instability leading to the development of these striations is the non-Maxwellian nature of the electron energy distribution function in the uniform electric field prior to the instability onset, resulting in an electron diffusion coefficient in space much larger than the energy diffusion coefficient.

1.
A. V.
Nedospasov
,
Sov. Phys. Usp.
11
,
188
(
1968
).
3.
K.
Rohlena
,
T.
Ruzicka
, and
L.
Pekarek
,
Czech. J. Phys. B
22
,
920
(
1972
).
4.
V. I.
Kolobov
,
J. Phys. D
39
(
24
),
R487
R506
(
2006
).
5.
L. D.
Tsendin
,
Phys.-Usp.
53
(
2
),
133
157
(
2010
).
6.
Y. B.
Golubovskii
,
V. O.
Nekuchaev
, and
A. Y.
Skoblo
,
Tech. Phys.
59
(
12
),
1787
1800
(
2014
).
7.
Y.
Raizer
,
Gas Discharge Physics
(
Springer
,
Berlin, Heidelberg
,
1997
).
10.
W.
Pupp
,
Z. Phys.
36
,
61
(
1935
).
11.
V. I.
Kolobov
,
R. R.
Arslanbekov
,
D.
Levko
, and
V. A.
Godyak
,
J. Phys. D
53
(
25
),
25LT01
(
2020
).
12.
L. D.
Tsendin
,
Plasma Sources Sci. Technol.
4
,
200
(
1995
).
13.
M.
Novak
,
Czech. J. Phys.
B10
,
954
(
1960
).
14.
Y. B.
Golubovskii
,
A. Y.
Skoblo
,
C.
Wilke
,
R. V.
Kozakov
,
J.
Behnke
, and
V. O.
Nekutchaev
,
Phys. Rev. E
72
(
2
),
026414
(
2005
).
15.
T.
Ruzicka
and
K.
Rohlena
,
Czech. J. Phys. B
22
,
906
(
1972
).
16.
L. D.
Tsendin
,
Sov. J. Plasma Phys.
8
,
96
(
1982
).
17.
L. D.
Tsendin
,
Sov. J. Plasma Phys.
8
,
228
(
1982
).
18.
V. A.
Shveigert
,
Sov. J. Plasma Phys.
15
,
714
(
1989
).
19.
Y. B.
Golubovskii
,
A. Y.
Skoblo
,
C.
Wilke
,
R. V.
Kozakov
, and
V. O.
Nekuchaev
,
Plasma Sources Sci. Technol.
18
(
4
),
045022
(
2009
).
20.
21.
Y. B.
Golubovskii
,
R. V.
Kozakov
,
S. A.
Maiorov
,
J.
Behnke
, and
J. F.
Behnke
,
Phys. Rev. E
62
,
2707
(
2000
).
22.
D.
Levko
,
Phys. Plasmas
28
(
1
),
029847
(
2021
).
23.
V. I.
Kolobov
,
J. A.
Guzman
, and
R. R.
Arslanbekov
,
Plasma Sources Sci. Technol.
(published online
2022
).
24.
V.
Désangles
,
J. L.
Raimbault
,
A.
Poye
,
P.
Chabert
, and
N.
Plihon
,
Phys. Rev. Lett.
123
(
26
),
265001
(
2019
).
25.
C. K.
Birdsall
,
IEEE Trans. Plasma Sci.
19
,
65
(
1991
).
26.
27.
J. P.
Boeuf
,
G.
Fubiani
, and
L.
Garrigues
,
Plasma Sources Sci. Technol.
25
(
4
),
045010
(
2016
).
28.
J. P.
Boeuf
and
L.
Garrigues
,
Phys. Plasmas
25
(
6
),
061204
(
2018
).
29.
J. P.
Boeuf
,
Phys. Plasmas
26
(
7
),
072113
(
2019
).
30.
J. P.
Boeuf
and
M.
Takahashi
,
Phys. Plasmas
27
(
8
),
083520
(
2020
).
31.
J. P.
Boeuf
and
M.
Takahashi
,
Phys. Rev. Lett.
124
(
18
),
185005
(
2020
).
32.
Y.
Jiang
,
G.
Fubiani
,
L.
Garrigues
, and
J. P.
Boeuf
,
Phys. Plasmas
27
(
11
),
014058
(
2020
).
33.
M. M.
Turner
,
A.
Derzsi
,
Z.
Donkó
,
D.
Eremin
,
S. J.
Kelly
,
T.
Lafleur
, and
T.
Mussenbrock
,
Phys. Plasmas
20
(
1
),
013507
(
2013
).
34.
Z.
Donkó
,
A.
Derzsi
,
M.
Vass
,
B.
Horvàth
,
S.
Wilczek
,
B.
Hartmann
, and
P.
Hartmann
,
Plasma Sources Sci. Technol.
30
,
095017
(
2021
).
35.
See
www.lxcat.net for “
SigloDatabase
(last accessed November 3, 2021).
36.
E.
Carbone
,
W.
Graef
,
G.
Hagelaar
,
D.
Boer
,
M. M.
Hopkins
,
J. C.
Stephens
,
B. T.
Yee
,
S.
Pancheshnyi
,
J.
van Dijk
, and
L.
Pitchford
,
Atoms
9
(
1
),
16
(
2021
).
37.
J.
Meunier
,
P.
Belenguer
, and
J. P.
Boeuf
,
J. Appl. Phys.
78
,
731
(
1995
).
38.
A. V.
Phelps
,
J. Appl. Phys.
76
,
747
(
1994
).
39.
D.
Piscitelli
,
A. V.
Phelps
,
J.
de Urquijo
,
E.
Basurto
, and
L. C.
Pitchford
,
Phys. Rev. E
68
(
4
),
046408
(
2003
).
40.
V.
Vahedi
and
M.
Surendra
,
Comput. Phys. Commun.
87
,
179
(
1995
).
41.
C.
Hirsch
,
Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics
(
Elsevier
,
Amsterdam
,
2007
).
42.
G. J. M.
Hagelaar
and
L. C.
Pitchford
,
Plasma Sources Sci. Technol.
14
(
4
),
722
733
(
2005
).
43.
H. W.
Ellis
,
R. Y.
Pai
,
E. W.
McDaniel
,
E. A.
Mason
, and
L. A.
Viehland
,
At. Data Nucl. Data Tables
17
,
177
(
1976
).
44.
V. A.
Godyak
,
B. M.
Alexandrovich
, and
V. I.
Kolobov
,
Phys. Plasmas
26
(
3
),
033504
(
2019
).
45.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
John Wiley & Sons, Inc
.,
New York
,
2005
).
46.
W. P.
Allis
and
S. J.
Buschsbaum
, in
Selected Works of William Phelps Allis
, edited by
S.
Brown
(
MIT Press
,
Cambridge, MA
,
1967
).
47.
Y. B.
Golubovskii
,
V. S.
Nekuchaev
, and
N. S.
Ponomarev
,
Tech. Phys.
43
,
288
(
1998
).
You do not currently have access to this content.