Two different fluid models for collisionless plasmas are compared. One is based on the classical Chew–Goldberger–Low (CGL) model that includes a finite Larmor radius correction and the Landau closure for the longitudinal mode. Another one takes into account the effect of cyclotron resonance in addition to Landau resonance and is referred to as the cyclotron resonance closure (CRC) model [T. Jikei and T. Amano, Phys. Plasmas 28, 042105 (2021)]. While the linear property of the parallel firehose instability is better described by the CGL model, the electromagnetic ion cyclotron instability driven unstable by the cyclotron resonance is reproduced only by the CRC model. Nonlinear simulation results for the parallel firehose instability performed with the two models are also discussed. Although the linear and quasilinear isotropization phases are consistent with theory in both models, long-term behaviors may be substantially different. The final state obtained by the CRC model may be reasonably understood in terms of the marginal stability condition. In contrast, the lack of cyclotron damping in the CGL model makes it rather difficult to predict the long-term behavior with simple physical arguments. This suggests that incorporating collisionless damping both for longitudinal and transverse modes is crucial for a nonlinear fluid simulation model of collisionless plasmas.

1.
T.
Jikei
and
T.
Amano
, “
A non-local fluid closure for modeling cyclotron resonance in collisionless magnetized plasmas
,”
Phys. Plasmas
28
,
042105
(
2021
).
2.
G. F.
Chew
,
M. L.
Goldberger
, and
F. E.
Low
, “
The boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions
,”
Proc. R. Soc. London, Ser. A
236
,
112
118
(
1956
).
3.
P.
Hunana
,
A.
Tenerani
,
G. P.
Zank
,
E.
Khomenko
,
M. L.
Goldstein
,
G. M.
Webb
,
P. S.
Cally
,
M.
Collados
,
M.
Velli
,
L.
Adhikari
 et al, “
An introductory guide to fluid models with anisotropic temperatures. Part 1. CGL description and collisionless fluid hierarchy
,”
J. Plasma Phys.
85
,
205850602
(
2019
).
4.
P.
Hunana
,
A.
Tenerani
,
G. P.
Zank
,
M. L.
Goldstein
,
G. M.
Webb
,
E.
Khomenko
,
M.
Collados
,
P. S.
Cally
,
L.
Adhikari
,
M.
Velli
 et al, “
An introductory guide to fluid models with anisotropic temperatures. Part 2. Kinetic theory, Padé approximants and landau fluid closures
,”
J. Plasma Phys.
85
,
205850603
(
2019
).
5.
G. W.
Hammett
and
F. W.
Perkins
, “
Fluid moment models for landau damping with application to the ion-temperature-gradient instability
,”
Phys. Rev. Lett.
64
,
3019
3022
(
1990
).
6.
G.
Hammett
,
W.
Dorland
, and
F.
Perkins
, “
Fluid models of phase mixing, landau damping, and nonlinear gyrokinetic dynamics
,”
Phys. Fluids B
4
,
2052
(
1992
).
7.
J. J.
Ramos
, “
Fluid formalism for collisionless magnetized plasmas
,”
Phys. Plasmas
12
,
052102
(
2005
).
8.
P.
Goswami
,
T.
Passot
, and
P. L.
Sulem
, “
A landau fluid model for warm collisionless plasmas
,”
Phys. Plasmas
12
,
102109
(
2005
).
9.
T.
Passot
and
P. L.
Sulem
, “
A fluid description for landau damping of dispersive MHD waves
,”
Nonlinear Processes Geophys.
11
,
245
258
(
2004
).
10.
T.
Passot
and
P. L.
Sulem
, “
Collisionless magnetohydrodynamics with gyrokinetic effects
,”
Phys. Plasmas
14
,
082502
(
2007
).
11.
P. L.
Sulem
and
T.
Passot
, “
Landau fluid closures with nonlinear large-scale finite larmor radius corrections for collisionless plasmas
,”
J. Plasma Phys.
81
,
325810103
(
2015
).
12.
P. B.
Snyder
,
G. W.
Hammett
, and
W.
Dorland
, “
Landau fluid models of collisionless magnetohydrodynamics
,”
Phys. Plasmas
4
,
3974
3985
(
1997
).
13.
M. S.
Rosin
,
A. A.
Schekochihin
,
F.
Rincon
, and
S. C.
Cowley
, “
A non-linear theory of the parallel firehose and gyrothermal instabilities in a weakly collisional plasma
,”
Mon. Not. R. Astron. Soc.
413
,
7
38
(
2011
).
14.
A. A.
Schekochihin
,
S. C.
Cowley
,
F.
Rincon
, and
M. S.
Rosin
, “
Magnetofluid dynamics of magnetized cosmic plasma: Firehose and gyrothermal instabilities
,”
Mon. Not. R. Astron. Soc.
405
,
291
300
(
2010
).
15.
B.-J.
Wang
and
L.-N.
Hau
, “
Parallel proton fire hose instability in gyrotropic Hall MHD model
,”
J. Geophys. Res.
115
,
A04105
(
2010
), .
16.
P.
Hunana
and
G.
Zank
, “
On the parallel and oblique firehose instability in fluid models
,”
Astrophys. J.
839
,
13
(
2017
).
17.
T. H.
Stix
,
Waves in Plasmas
(
American Institute of Physics
,
1992
).
18.
P.
Yoon
, “
Kinetic instabilities in the solar wind driven by temperature anisotropies
,”
Rev. Mod. Plasma Phys.
1
,
4
(
2017
).
19.
J.
Seough
,
P. H.
Yoon
, and
J.
Hwang
, “
Simulation and quasilinear theory of proton firehose instability
,”
Phys. Plasmas
22
,
012303
(
2015
).
20.
M. L.
Goldstein
, “
An instability of finite amplitude circularly polarized Afvén waves
,”
Astrophys. J.
219
,
700
704
(
1978
).
21.
T.
Terasawa
,
M.
Hoshino
,
J.-I.
Sakai
, and
T.
Hada
, “
Decay instability of finite-amplitude circularly polarized Alfven waves: A numerical simulation of stimulated brillouin scattering
,”
J. Geophys. Res.: Space Phys.
91
,
4171
4187
, (
1986
).
You do not currently have access to this content.