The method is extended to calculate all possible components of neoclassical transport matrices, including non-diagonal components and interspecies components of any species combinations in an arbitrary magnetic field configuration, by a single simulation. The method is implemented in a global neoclassical code FORTEC-3D and applied to cases of multi-ion species plasmas in a tokamak and a helical configuration, respectively. The results are benchmarked against analytic solutions and local simulation results. It is found that the results obtained with the newly developed method provide reliable solutions that satisfy the Onsager symmetry relation as well as the intrinsic ambipolarity in a tokamak configuration.
References
1.
L. P.
Pitaevskii
and E. M.
Lifshitz
, Physical Kinetics, Course of Theoretical Physics
(Elsevier Science
, 1995
), Vol. 10
.2.
D.
Kondepudi
and I.
Prigogine
, Modern Thermodynamics: From Heat Engines to Dissipative Structures
(John Wiley & Sons
, 2014
).3.
G.
Lebon
, D.
Jou
, and J.
Casas-Vázquez
, Understanding Non-Equilibrium Thermodynamics
(Springer
, 2008
), Vol. 295
.4.
S. P.
Hirshman
, K. C.
Shaing
, W. I.
Van Rij
, C. O.
Beasley
, Jr. , and E. C.
Crume
, Jr. , “ Plasma transport coefficients for nonsymmetric toroidal confinement systems
,” Phys. Fluids
29
, 2951
–2959
(1986
).5.
W. I.
van Rij
and S. P.
Hirshman
, “ Variational bounds for transport coefficients in three-dimensional toroidal plasmas
,” Phys. Fluids B
1
, 563
–569
(1989
).6.
E.
Belli
and J.
Candy
, “ Kinetic calculation of neoclassical transport including self-consistent electron and impurity dynamics
,” Plasma Phys. Controlled Fusion
50
, 095010
(2008
).7.
M.
Landreman
and D. R.
Ernst
, “ New velocity-space discretization for continuum kinetic calculations and Fokker–Planck collisions
,” J. Comput. Phys.
243
, 130
–150
(2013
).8.
E.
Held
, S.
Kruger
, J.-Y.
Ji
, E.
Belli
, and B.
Lyons
, “ Verification of continuum drift kinetic equation solvers in nimrod
,” Phys. Plasmas
22
, 032511
(2015
).9.
J. L.
Velasco
, I.
Calvo
, F. I.
Parra
, and J.
García-Regaña
, “ KNOSOS: A fast orbit-averaging neoclassical code for stellarator geometry
,” J. Comput. Phys.
418
, 109512
(2020
).10.
W. X.
Wang
, N.
Nakajima
, M.
Okamoto
, and S.
Murakami
, “ A new method for neoclassical transport studies
,” Plasma Phys. Controlled Fusion
41
, 1091
(1999
).11.
S.
Brunner
, E.
Valeo
, and J. A.
Krommes
, “ Collisional delta-f scheme with evolving background for transport time scale simulations
,” Phys. Plasmas
6
, 4504
–4521
(1999
).12.
K.
Fujita
and S.
Satake
, “ Evaluation of impacts of driving forces on neoclassical transport with weight-splitting method
,” Plasma Fusion Res.
17
, 1403065
(2022
).13.
S.
Satake
, M.
Okamoto
, N.
Nakajima
, H.
Sugama
, M.
Yokoyama
, and C. D.
Beidler
, “ Non-local neoclassical transport simulation of geodesic acoustic mode
,” Nucl. Fusion
45
, 1362
(2005
).14.
S.
Satake
, R.
Kanno
, and H.
Sugama
, “ Development of a non-local neoclassical transport code for helical configurations
,” Plasma Fusion Res.
3
, S1062
–S1062
(2008
).15.
S.
Satake
, Y.
Idomura
, H.
Sugama
, and T.-H.
Watanabe
, “ Benchmark test of drift-kinetic and gyrokinetic codes through neoclassical transport simulations
,” Comput. Phys. Commun.
181
, 1069
–1076
(2010
).16.
S.
Matsuoka
, S.
Satake
, R.
Kanno
, and H.
Sugama
, “ Effects of magnetic drift tangential to magnetic surfaces on neoclassical transport in non-axisymmetric plasmas
,” Phys. Plasmas
22
, 072511
(2015
).17.
B.
Huang
, S.
Satake
, R.
Kanno
, H.
Sugama
, and S.
Matsuoka
, “ Benchmark of the local drift-kinetic models for neoclassical transport simulation in helical plasmas
,” Phys. Plasmas
24
, 022503
(2017
).18.
S.
Satake
, M.
Nakata
, T.
Pianpanit
, H.
Sugama
, M.
Nunami
, S.
Matsuoka
, S.
Ishiguro
, and R.
Kanno
, “ Benchmark of a new multi-ion-species collision operator for δf Monte Carlo neoclassical simulation
,” Comput. Phys. Commun.
255
, 107249
(2020
).19.
K.
Fujita
, S.
Satake
, M.
Nunami
, J. M.
García-Regaña
, J. L.
Velasco
, and I.
Calvo
, “ Study on impurity hole plasmas by global neoclassical simulation
,” Nucl. Fusion
61
, 086025
(2021
).20.
K.
Ida
, M.
Yoshinuma
, M.
Osakabe
, K.
Nagaoka
, M.
Yokoyama
, H.
Funaba
, C.
Suzuki
, T.
Ido
, A.
Shimizu
, I.
Murakami
et al, “ Observation of an impurity hole in a plasma with an ion internal transport barrier in the large helical device
,” Phys. Plasmas
16
, 056111
(2009
).21.
M.
Yoshinuma
, K.
Ida
, M.
Yokoyama
, M.
Osakabe
, K.
Nagaoka
, S.
Morita
, M.
Goto
, N.
Tamura
, C.
Suzuki
, S.
Yoshimura
et al, “ Observation of an impurity hole in the large helical device
,” Nucl. Fusion
49
, 062002
(2009
).22.
T.
Ido
, A.
Shimizu
, M.
Nishiura
, K.
Nagaoka
, M.
Yokoyama
, K.
Ida
, M.
Yoshinuma
, K.
Toi
, K.
Itoh
, H.
Nakano
et al, “ Experimental study of radial electric field and electrostatic potential fluctuation in the large helical device
,” Plasma Phys. Controlled Fusion
52
, 124025
(2010
).23.
J. M.
García-Regaña
, C. D.
Beidler
, R.
Kleiber
, P.
Helander
, A.
Mollén
, J. A.
Alonso
, M.
Landreman
, H.
Maaßberg
, H. M.
Smith
, Y.
Turkin
, and J. L.
Velasco
, “ Electrostatic potential variation on the flux surface and its impact on impurity transport
,” Nucl. Fusion
57
, 056004
(2017
).24.
A.
Mollén
, M.
Landreman
, H. M.
Smith
, J. M.
García-Regaña
, and M.
Nunami
, “ Flux-surface variations of the electrostatic potential in stellarators: Impact on the radial electric field and neoclassical impurity transport
,” Plasma Phys. Controlled Fusion
60
, 084001
(2018
).25.
J. L.
Velasco
, I.
Calvo
, J. M.
García-Regaña
, F. I.
Parra
, S.
Satake
, J. A.
Alonso
, and LHD Team
, “ Large tangential electric fields in plasmas close to temperature screening
,” Plasma Phys. Controlled Fusion
60
, 074004
(2018
).26.
M.
Yoshinuma
, K.
Ida
, and M.
Yokoyama
, “ Impurity transport of ion ITB plasmas on LHD
,” in 23rd IAEA
, Daejon, Korea
, 2010
.27.
P.
Helander
, S. L.
Newton
, A.
Mollén
, and H. M.
Smith
, “ Impurity transport in a mixed-collisionality stellarator plasma
,” Phys. Rev. Lett.
118
, 155002
(2017
).28.
S. L.
Newton
, P.
Helander
, A.
Mollén
, and H. M.
Smith
, “ Impurity transport and bulk ion flow in a mixed collisionality stellarator plasma
,” J. Plasma Phys.
83
, 905830505
(2017
).29.
I.
Calvo
, F. I.
Parra
, J. L.
Velasco
, J. A.
Alonso
, and J. M.
García-Regaña
, “ Stellarator impurity flux driven by electric fields tangent to magnetic surfaces
,” Nucl. Fusion
58
, 124005
(2018
).30.
S.
Buller
, H. M.
Smith
, P.
Helander
, A.
Mollén
, S. L.
Newton
, and I.
Pusztai
, “ Collisional transport of impurities with flux-surface varying density in stellarators
,” J. Plasma Phys.
84
, 905840409
(2018
).31.
M. F.
Martin
and M.
Landreman
, “ Impurity temperature screening in stellarators close to quasisymmetry
,” J. Plasma Phys.
86
, 905860317
(2020
).32.
H.
Sugama
and W.
Horton
, “ Entropy production and Onsager symmetry in neoclassical transport processes of toroidal plasmas
,” Phys. Plasmas
3
, 304
–322
(1996
).33.
A. H.
Boozer
and G.
Kuo-Petravic
, “ Monte Carlo evaluation of transport coefficients
,” Phys. Fluids
24
, 851
–859
(1981
).34.
H.
Sugama
, T.-H.
Watanabe
, and M.
Nunami
, “ Linearized model collision operators for multiple ion species plasmas and gyrokinetic entropy balance equations
,” Phys. Plasmas
16
, 112503
(2009
).35.
M.
Nakata
, M.
Nunami
, T.-H.
Watanabe
, and H.
Sugama
, “ Improved collision operator for plasma kinetic simulations with multi-species ions and electrons
,” Comput. Phys. Commun.
197
, 61
–72
(2015
).36.
M.
Nunami
, M.
Nakata
, T.-H.
Watanabe
, and H.
Sugama
, “ Development of linearized collision operator for multiple ion species in gyrokinetic flux-tube simulations
,” Plasma Fusion Res.
10
, 1403058
(2015
).37.
J.
Candy
, E. A.
Belli
, and R.
Bravenec
, “ A high-accuracy Eulerian gyrokinetic solver for collisional plasmas
,” J. Comput. Phys.
324
, 73
–93
(2016
).38.
E.
Belli
and J.
Candy
, “ Implications of advanced collision operators for gyrokinetic simulation
,” Plasma Phys. Controlled Fusion
59
, 045005
(2017
).39.
Y.
Idomura
, “ A new hybrid kinetic electron model for full-f gyrokinetic simulations
,” J. Comput. Phys.
313
, 511
–531
(2016
).40.
S.
Maeyama
, T.-H.
Watanabe
, Y.
Idomura
, M.
Nakata
, and M.
Nunami
, “ Implementation of a gyrokinetic collision operator with an implicit time integration scheme and its computational performance
,” Comput. Phys. Commun.
235
, 9
–15
(2019
).41.
E.
Belli
and J.
Candy
, “ Full linearized Fokker–Planck collisions in neoclassical transport simulations
,” Plasma Phys. Controlled Fusion
54
, 015015
(2011
).42.
S.
Matsuoka
, H.
Sugama
, and Y.
Idomura
, “ Neoclassical transport simulations with an improved model collision operator
,” Phys. Plasmas
28
, 064501
(2021
).43.
H.
Sugama
, S.
Matsuoka
, S.
Satake
, M.
Nunami
, and T.-H.
Watanabe
, “ Improved linearized model collision operator for the highly collisional regime
,” Phys. Plasmas
26
, 102108
(2019
).44.
J. W.
Connor
, “ The neo-classical transport theory of a plasma with multiple ion species
,” Plasma Phys.
15
, 765
(1973
).45.
D. A.
Spong
, “ Generation and damping of neoclassical plasma flows in stellarators
,” Phys. Plasmas
12
, 056114
(2005
).46.
H.
Sugama
and S.
Nishimura
, “ How to calculate the neoclassical viscosity, diffusion, and current coefficients in general toroidal plasmas
,” Phys. Plasmas
9
, 4637
–4653
(2002
).47.
H.
Sugama
and S.
Nishimura
, “ Moment-equation methods for calculating neoclassical transport coefficients in general toroidal plasmas
,” Phys. Plasmas
15
, 042502
(2008
).48.
P.
Helander
and D. J.
Sigmar
, Collisional Transport in Magnetized Plasmas
(Cambridge University Press
, 2005
), Vol. 4
.49.
H.
Sugama
, M.
Okamoto
, W.
Horton
, and M.
Wakatani
, “ Transport processes and entropy production in toroidal plasmas with gyrokinetic electromagnetic turbulence
,” Phys. Plasmas
3
, 2379
–2394
(1996
).50.
K. C.
Shaing
, K.
Ida
, and S. A.
Sabbagh
, “ Neoclassical plasma viscosity and transport processes in non-axisymmetric tori
,” Nucl. Fusion
55
, 125001
(2015
).51.
M.
Muto
, K.
Imadera
, and Y.
Kishimoto
, “ Gyrokinetic entropy balances and dynamics in toroidal flux-driven ITG turbulence
,” Phys. Plasmas
28
, 082304
(2021
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.