We report on experimental observations of trapping of waves in a flowing dusty plasma. The experiments are performed in an inverted -shaped dusty plasma experimental device in which the dusty plasma is created in a DC glow discharge argon plasma using micrometer-sized kaolin particles. Two copper wires are installed radially on the cathode, which serve to generate the flow in the dust fluid as well as to confine the waves. The dust fluid is initially made to flow over both the wires by altering the sheath potential of one of these wires, and as a result, the wave gets excited and propagates in the downstream direction. The wave gets trapped in between the wires when their separation is below a critical value of ∼2 cm. For a long time (of the order of a few seconds), the trapped-wave structure retains its identity. The amplitude of the wave crests and the distance between them remain constant with the dust fluid flow velocities. A numerical solution of the forced Korteweg-de Vries equation with two source terms as well as molecular dynamic simulations reproduce our experimental findings in a qualitative manner.

1.
L. J.
Pratt
, “
On nonlinear flow with multiple obstructions
,”
J. Atmos. Sci.
41
,
1214
1225
(
1984
).
2.
F.
Dias
and
J.-M.
Vanden-Broeck
, “
Trapped waves between submerged obstacles
,”
J. Fluid Mech.
509
,
93
102
(
2004
).
3.
T.
Sahoo
,
M.
Lee
, and
A.
Chwang
, “
Trapping and generation of waves by vertical porous structures
,”
J. Eng. Mech.
126
,
1074
1082
(
2000
).
4.
H.
Kim
,
R.
Stenzel
, and
A.
Wong
, “
Development of “cavitons” and trapping of rf field
,”
Phys. Rev. Lett.
33
,
886
(
1974
).
5.
S.
Antipov
,
M.
Nezlin
,
A.
Trubnikov
, and
I.
Kurchatov
, “
Experimental studies of Langmuir solitons
,”
Physica D
3
,
311
328
(
1981
).
6.
T.
Tanikawa
,
A.
Wong
, and
D.
Eggleston
, “
Trapping of plasma waves in cavitons
,”
Phys. Fluids
27
,
1416
1426
(
1984
).
7.
P. K.
Shukla
and
A.
Mamun
,
Introduction to Dusty Plasma Physics
(
CRC Press
,
2015
).
8.
Y.
Nakamura
,
New Developments in Nuclear Fusion Research
(
Nova Publishers
,
2006
).
9.
R. L.
Merlino
, “
Dusty plasmas and applications in space and industry
,”
Plasma Phys. Appl.
81
,
73
110
(
2006
).
10.
N.
Rao
,
P.
Shukla
, and
M.
Yu
, “
Dust-acoustic waves in dusty plasmas
,”
Planet. Space Sci.
38
,
543
546
(
1990
).
11.
A.
Barkan
,
R. L.
Merlino
, and
N.
D'Angelo
, “
Laboratory observation of the dust-acoustic wave mode
,”
Phys. Plasmas
2
,
3563
3565
(
1995
).
12.
A.
Piel
,
M.
Klindworth
,
O.
Arp
,
A.
Melzer
, and
M.
Wolter
, “
Obliquely propagating dust-density plasma waves in the presence of an ion beam
,”
Phys. Rev. Lett.
97
,
205009
(
2006
).
13.
I.
Pilch
,
A.
Piel
,
T.
Trottenberg
, and
M. E.
Koepke
, “
Dynamics of small dust clouds trapped in a magnetized anodic plasma
,”
Phys. Plasmas
14
,
123704
(
2007
).
14.
T.
Flanagan
and
J.
Goree
, “
Observation of the spatial growth of self-excited dust-density waves
,”
Phys. Plasmas
17
,
123702
(
2010
).
15.
T.
Flanagan
and
J.
Goree
, “
Development of nonlinearity in a growing self-excited dust-density wave
,”
Phys. Plasmas
18
,
013705
(
2011
).
16.
A.
Piel
,
O.
Arp
,
M.
Klindworth
, and
A.
Melzer
, “
Obliquely propagating dust-density waves
,”
Phys. Rev. E
77
,
026407
(
2008
).
17.
P. K.
Shukla
and
V. P.
Silin
, “
Dust ion-acoustic wave
,”
Phys. Scr.
45
,
508
508
(
1992
).
18.
A. A.
Mamun
and
P. K.
Shukla
, “
Electrostatic solitary and shock structures in dusty plasmas
,”
Phys. Scr.
2002
,
107
.
19.
P.
Bandyopadhyay
,
G.
Prasad
,
A.
Sen
, and
P. K.
Kaw
, “
Experimental study of nonlinear dust acoustic solitary waves in a dusty plasma
,”
Phys. Rev. Lett.
101
,
065006
(
2008
).
20.
Y.
Nakamura
and
A.
Sarma
, “
Observation of ion-acoustic solitary waves in a dusty plasma
,”
Phys. Plasmas
8
,
3921
3926
(
2001
).
21.
Y.
Nakamura
,
H.
Bailung
, and
P. K.
Shukla
, “
Observation of ion-acoustic shocks in a dusty plasma
,”
Phys. Rev. Lett.
83
,
1602
1605
(
1999
).
22.
S.
Jaiswal
,
P.
Bandyopadhyay
, and
A.
Sen
, “
Dusty plasma experimental (DPEx) device for complex plasma experiments with flow
,”
Rev. Sci. Instrum.
86
,
113503
(
2015
).
23.
S. A.
Khrapak
and
G. E.
Morfill
, “
Grain surface temperature in noble gas discharges: Refined analytical model
,”
Phys. Plasmas
13
,
104506
(
2006
).
24.
O.
Havnes
,
G. E.
Morfill
, and
C. K.
Goertz
, “
Plasma potential and grain charges in a dust cloud embedded in a plasma
,”
J. Geophys. Res.
89
,
10999
11003
, (
1984
). https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/JA089iA12p10999.
25.
S.
Jaiswal
,
P.
Bandyopadhyay
, and
A.
Sen
, “
Experimental observation of precursor solitons in a flowing complex plasma
,”
Phys. Rev. E
93
,
041201
(
2016
).
26.
M.
Schwabe
,
M.
Rubin-Zuzic
,
S.
Zhdanov
,
H.
Thomas
, and
G.
Morfill
, “
Highly resolved self-excited density waves in a complex plasma
,”
Phys. Rev. Lett.
99
,
095002
(
2007
).
27.
A.
Mamun
,
R.
Cairns
, and
P.
Shukla
, “
Solitary potentials in dusty plasmas
,”
Phys. Plasmas
3
,
702
704
(
1996
).
28.
K.
Kumar
,
P.
Bandyopadhyay
,
S.
Singh
,
G.
Arora
, and
A.
Sen
, “
Reflection of a dust acoustic solitary wave in a dusty plasma
,”
Phys. Plasmas
28
,
103701
(
2021
).
29.
B. J.
Binder
,
M. G.
Blyth
, and
S.
Balasuriya
, “
Non-uniqueness of steady free-surface flow at critical Froude number
,”
Europhys. Lett.
105
,
44003
(
2014
).
30.
B. K.
Ee
,
R. H. J.
Grimshaw
,
D.-H.
Zhang
, and
K. W.
Chow
, “
Steady transcritical flow over a hole: Parametric map of solutions of the forced Korteweg-de Vries equation
,”
Phys. Fluids
22
,
056602
(
2010
).
31.
N. J.
Zabusky
and
C. J.
Galvin
, “
Shallow-water waves, the Korteweg-de Vries equation and solitons
,”
J. Fluid Mech.
47
,
811
824
(
1971
).
32.
N. F.
Smyth
, “
Formation of one-dimensional waves for resonant flow in a channel
,”
Pure Appl. Geophys.
133
,
619
633
(
1990
).
33.
A.
Sen
,
S.
Tiwari
,
S.
Mishra
, and
P.
Kaw
, “
Nonlinear wave excitations by orbiting charged space debris objects
,”
Adv. Space Res.
56
,
429
435
(
2015
).
34.
G.
Arora
,
P.
Bandyopadhyay
,
M. G.
Hariprasad
, and
A.
Sen
, “
A dust particle based technique to measure potential profiles in a plasma
,”
Phys. Plasmas
25
,
083711
(
2018
).
35.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
36.
E.
Vanden-Eijnden
and
G.
Ciccotti
, “
Second-order integrators for Langevin equations with holonomic constraints
,”
Chem. Phys. Lett.
429
,
310
316
(
2006
).
37.
X.
Sun
,
T.
Lin
, and
J. D.
Gezelter
, “
Langevin dynamics for rigid bodies of arbitrary shape
,”
J. Chem. Phys.
128
,
234107
(
2008
).
38.
P. S.
Epstein
, “
On the resistance experienced by spheres in their motion through gases
,”
Phys. Rev.
23
,
710
(
1924
).
39.
S. K.
Tiwari
and
A.
Sen
, “
Fore-wake excitations from moving charged objects in a complex plasma
,”
Phys. Plasmas
23
,
100705
(
2016
).
You do not currently have access to this content.