The acceleration of the solar coronal plasma to supersonic speeds is one of the most fundamental yet unresolved problems in heliophysics. Despite the success of Parker's pioneering theory on an isothermal solar corona, the realistic solar wind is observed to be non-isothermal, and the decay of its temperature with radial distance usually can be fitted to a polytropic model. In this work, we use Parker Solar Probe data from the first nine encounters to estimate the polytropic index of solar wind protons. The estimated polytropic index varies roughly between 1.25 and 1.5 and depends strongly on solar wind speed, faster solar wind on average displaying a smaller polytropic index. We comprehensively analyze the 1D spherically symmetric solar wind model with the polytropic index γ [ 1 , 5 / 3 ]. We derive a closed algebraic equation set for transonic stellar flows, that is, flows that pass the sound point smoothly. We show that an accelerating wind solution only exists in the parameter space bounded by C 0 / C g < 1 and ( C 0 / C g ) 2 > 2 ( γ 1 ), where C0 and Cg are the surface sound speed and one half of the escape velocity of the star, and no stellar wind exists for γ > 3 / 2. With realistic solar coronal temperatures, the observed solar wind with γ 1.25 cannot be explained by the simple polytropic model. We show that mechanisms such as strong heating in the lower corona that leads to a thick isothermal layer around the Sun and large-amplitude Alfvén wave pressure are necessary to remove the constraint in γ and accelerate the solar wind to high speeds.

1.
C.
Shi
,
M.
Velli
,
O.
Panasenco
,
A.
Tenerani
,
V.
Réville
,
S. D.
Bale
,
J.
Kasper
,
K.
Korreck
,
J.
Bonnell
,
T. D.
de Wit
 et al, “
Alfvénic versus non-Alfvénic turbulence in the inner heliosphere as observed by Parker Solar Probe
,”
Astron. Astrophys.
650
,
A21
(
2021
).
2.
N.
Sioulas
,
Z.
Huang
,
M.
Velli
,
R.
Chhiber
,
M. E.
Cuesta
,
C.
Shi
,
W. H.
Matthaeus
,
R.
Bandyopadhyay
,
L.
Vlahos
,
T. A.
Bowen
 et al, “
Magnetic field intermittency in the solar wind: PSP and SolO observations ranging from the Alfven region out to 1 AU
,” arXiv:2206.00871 (
2022
).
3.
E. N.
Parker
, “
Dynamics of the interplanetary gas and magnetic fields
,”
Astrophys. J.
128
,
664
(
1958
).
4.
E.
Parker
, “
Dynamical properties of stellar coronas and stellar winds. I. Integration of the momentum equation
,”
Astrophys. J.
139
,
72
(
1964
).
5.
E.
Parker
, “
Dynamical properties of stellar coronas and stellar winds. II. Integration of the heat-flow equation
,”
Astrophys. J.
139
,
93
(
1964
).
6.
E.
Parker
, “
Dynamical properties of stellar coronas and stellar winds, IV. The separate existence of subsonic and supersonic solutions
,”
Astrophys. J.
141
,
1463
(
1965
).
7.
J. V.
Hollweg
, “
On electron heat conduction in the solar wind
,”
J. Geophys. Res.
79
,
3845
3850
, (
1974
).
8.
J. V.
Hollweg
, “
Collisionless electron heat conduction in the solar wind
,”
J. Geophys. Res.
81
,
1649
1658
, (
1976
).
9.
P. J.
Cargill
and
J. A.
Klimchuk
, “
Nanoflare heating of the corona revisited
,”
Astrophys. J.
605
,
911
(
2004
).
10.
J.
Belcher
and
L.
Davis
, Jr.
, “
Large-amplitude Alfvén waves in the interplanetary medium, 2
,”
J. Geophys. Res.
76
,
3534
3563
, (
1971
).
11.
M.
Heinemann
and
S.
Olbert
, “
Non-WKB Alfvén waves in the solar wind
,”
J. Geophys. Res.: Space Phys.
85
,
1311
1327
, (
1980
).
12.
R. H.
Kraichnan
, “
Inertial-range spectrum of hydromagnetic turbulence
,”
Phys. Fluids
8
,
1385
1387
(
1965
).
13.
J. C.
Kasper
,
B. A.
Maruca
,
M. L.
Stevens
, and
A.
Zaslavsky
, “
Sensitive test for ion-cyclotron resonant heating in the solar wind
,”
Phys. Rev. Lett.
110
,
091102
(
2013
).
14.
S.
Kobayashi
,
F.
Sahraoui
,
T.
Passot
,
D.
Laveder
,
P.
Sulem
,
S.
Huang
,
P.
Henri
, and
R.
Smets
, “
Three-dimensional simulations and spacecraft observations of sub-ion scale turbulence in the solar wind: Influence of Landau damping
,”
Astrophys. J.
839
,
122
(
2017
).
15.
R.
Lionello
,
M.
Velli
,
C.
Downs
,
J. A.
Linker
,
Z.
Mikić
, and
A.
Verdini
, “
Validating a time-dependent turbulence-driven model of the solar wind
,”
Astrophys. J.
784
,
120
(
2014
).
16.
A.
Verdini
,
M.
Velli
,
W. H.
Matthaeus
,
S.
Oughton
, and
P.
Dmitruk
, “
A turbulence-driven model for heating and acceleration of the fast wind in coronal holes
,”
Astrophys. J. Lett.
708
,
L116
(
2009
).
17.
M.
Shoda
,
T.
Yokoyama
, and
T. K.
Suzuki
, “
A self-consistent model of the coronal heating and solar wind acceleration including compressible and incompressible heating processes
,”
Astrophys. J.
853
,
190
(
2018
).
18.
B. D.
Chandran
, “
An approximate analytic solution to the coupled problems of coronal heating and solar-wind acceleration
,”
J. Plasma Phys.
87
,
905870304
(
2021
).
19.
V.
Réville
,
M.
Velli
,
O.
Panasenco
,
A.
Tenerani
,
C.
Shi
,
S. T.
Badman
,
S. D.
Bale
,
J.
Kasper
,
M. L.
Stevens
,
K. E.
Korreck
 et al, “
The role of Alfvén wave dynamics on the large-scale properties of the solar wind: Comparing an MHD simulation with Parker Solar Probe E1 data
,”
Astrophys. J. Suppl. Ser.
246
,
24
(
2020
).
20.
V.
Pierrard
,
M.
Maksimovic
, and
J.
Lemaire
, “
Electron velocity distribution functions from the solar wind to the corona
,”
J. Geophys. Res.: Space Phys.
104
,
17021
17032
, (
1999
).
21.
J.
Newbury
,
C.
Russell
,
J.
Phillips
, and
S.
Gary
, “
Electron temperature in the ambient solar wind: Typical properties and a lower bound at 1 AU
,”
J. Geophys. Res.: Space Phys.
103
,
9553
9566
, (
1998
).
22.
L.
Berčič
,
M.
Maksimović
,
J. S.
Halekas
,
S.
Landi
,
C. J.
Owen
,
D.
Verscharen
,
D.
Larson
,
P.
Whittlesey
,
S. T.
Badman
,
S. D.
Bale
 et al, “
Ambipolar electric field and potential in the solar wind estimated from electron velocity distribution functions
,”
Astrophys. J.
921
,
83
(
2021
).
23.
R.
Hartle
and
P.
Sturrock
, “
Two-fluid model of the solar wind
,”
Astrophys. J.
151
,
1155
(
1968
).
24.
C.-Y.
Tu
and
E.
Marsch
, “
Two-fluid model for heating of the solar corona and acceleration of the solar wind by high-frequency Alfvén waves
,”
Sol. Phys.
171
,
363
391
(
1997
).
25.
E.
Leer
and
W.
Axford
, “
A two-fluid solar wind model with anisotropic proton temperature
,”
Sol. Phys.
23
,
238
250
(
1972
).
26.
B. D.
Chandran
,
T. J.
Dennis
,
E.
Quataert
, and
S. D.
Bale
, “
Incorporating kinetic physics into a two-fluid solar-wind model with temperature anisotropy and low-frequency Alfvén-wave turbulence
,”
Astrophys. J.
743
,
197
(
2011
).
27.
T.
Totten
,
J.
Freeman
, and
S.
Arya
, “
An empirical determination of the polytropic index for the free-streaming solar wind using Helios 1 data
,”
J. Geophys. Res.: Space Phys.
100
,
13
17
, (
1995
).
28.
G.
Livadiotis
, “
Long-term independence of solar wind polytropic index on plasma flow speed
,”
Entropy
20
,
799
(
2018
).
29.
G.
Nicolaou
,
G.
Livadiotis
, and
X.
Moussas
, “
Long-term variability of the polytropic index of solar wind protons at 1 AU
,”
Sol. Phys.
289
,
1371
1378
(
2014
).
30.
G.
Nicolaou
,
G.
Livadiotis
,
R. T.
Wicks
,
D.
Verscharen
, and
B. A.
Maruca
, “
Polytropic behavior of solar wind protons observed by Parker Solar Probe
,”
Astrophys. J.
901
,
26
(
2020
).
31.
J.
Huang
,
J. C.
Kasper
,
D.
Vech
,
K. G.
Klein
,
M.
Stevens
,
M. M.
Martinović
,
B. L.
Alterman
,
T.
Ďurovcová
,
K.
Paulson
,
B. A.
Maruca
 et al, “
Proton temperature anisotropy variations in inner heliosphere estimated with the first Parker Solar Probe observations
,”
Astrophys. J. Suppl. Ser.
246
,
70
(
2020
).
32.
H.
Bondi
, “
On spherically symmetrical accretion
,”
Mon. Not. R. Astron. Soc.
112
,
195
204
(
1952
).
33.
E.
Parker
, “
The hydrodynamic theory of solar corpuscular radiation and stellar winds
,”
Astrophys. J.
132
,
821
(
1960
).
34.
P.
Démoulin
, “
Why do temperature and velocity have different relationships in the solar wind and in interplanetary coronal mass ejections?
,”
Sol. Phys.
257
,
169
184
(
2009
).
35.
J.-B.
Dakeyo
,
M.
Maksimovic
,
P.
Démoulin
,
J.
Halekas
, and
M. L.
Stevens
, “
Statistical analysis of the radial evolution of the solar winds between 0.1 and 1 AU, and their semi-empirical iso-poly fluid modeling
,” arXiv:2207.03898 (
2022
).
36.
J.
Halekas
,
P.
Whittlesey
,
D.
Larson
,
M.
Maksimovic
,
R.
Livi
,
M.
Berthomier
,
J.
Kasper
,
A.
Case
,
M.
Stevens
,
S.
Bale
 et al, “
The radial evolution of the solar wind as organized by electron distribution parameters
,” arXiv:2207.06563 (
2022
).
37.
T.
Theuns
and
M.
David
, “
Spherically symmetric, polytropic flow
,”
Astrophys. J.
384
,
587
604
(
1992
).
38.
V.
Karageorgopoulos
,
K. N.
Gourgouliatos
, and
V.
Geroyannis
, “
Polytropic wind solutions via the complex plane strategy
,”
Astron. Comput.
36
,
100491
(
2021
).
39.
N.
Fox
,
M.
Velli
,
S.
Bale
,
R.
Decker
,
A.
Driesman
,
R.
Howard
,
J. C.
Kasper
,
J.
Kinnison
,
M.
Kusterer
,
D.
Lario
 et al, “
The solar probe plus mission: Humanity's first visit to our star
,”
Space Sci. Rev.
204
,
7
48
(
2016
).
40.
J. C.
Kasper
,
R.
Abiad
,
G.
Austin
,
M.
Balat-Pichelin
,
S. D.
Bale
,
J. W.
Belcher
,
P.
Berg
,
H.
Bergner
,
M.
Berthomier
,
J.
Bookbinder
 et al, “
Solar wind electrons alphas and protons (SWEAP) investigation: Design of the solar wind and coronal plasma instrument suite for solar probe plus
,”
Space Sci. Rev.
204
,
131
186
(
2016
).
41.
M.
Velli
, “
From supersonic winds to accretion: Comments on the stability of stellar winds and related flows
,”
Astrophys. J.
432
,
L55
L58
(
1994
).
42.
C. F.
McKee
and
E. C.
Ostriker
, “
Theory of star formation
,”
Annu. Rev. Astron. Astrophys.
45
,
565
687
(
2007
).
43.
N.
Meyer-Vernet
,
Basics of the Solar Wind
(
Cambridge University Press
,
2007
).
44.
V.
Rèville
, “
Vents et magnétisme des étoiles de type solaire: Influence sur la rotation stellaire, la couronne et les (exo) planètes
,” Ph.D. thesis (
Sorbonne Paris Cité
,
2016
).
45.
M.
Velli
,
R.
Grappin
, and
A.
Mangeney
, “
Waves from the sun?
,”
Geophys. Astrophys. Fluid Dyn.
62
,
101
121
(
1991
).
46.
J. C.
Kasper
,
S. D.
Bale
,
J. W.
Belcher
,
M.
Berthomier
,
A. W.
Case
,
B. D.
Chandran
,
D.
Curtis
,
D.
Gallagher
,
S.
Gary
,
L.
Golub
 et al, “
Alfvénic velocity spikes and rotational flows in the near-Sun solar wind
,”
Nature
576
,
228
231
(
2019
).
47.
S.
Bale
,
S.
Badman
,
J.
Bonnell
,
T.
Bowen
,
D.
Burgess
,
A.
Case
,
C.
Cattell
,
B.
Chandran
,
C.
Chaston
,
C.
Chen
 et al, “
Highly structured slow solar wind emerging from an equatorial coronal hole
,”
Nature
576
,
237
242
(
2019
).
48.
M.
Velli
, “
On the propagation of ideal, linear Alfvén waves in radially stratified stellar atmospheres and winds
,”
Astron. Astrophys.
270
,
304
314
(
1993
).
49.
G.
Alazraki
and
P.
Couturier
, “
Solar wind accejeration caused by the gradient of Alfven wave pressure
,”
Astron. Astrophys.
13
,
380
(
1971
).
50.
J.
Belcher
, “
Alfvénic wave pressures and the solar wind
,”
Astrophys. J.
168
,
509
(
1971
).
51.
J. V.
Hollweg
, “
Transverse Alfvén waves in the solar wind: Arbitrary k, v0, B0, and δb
,”
J. Geophys. Res.
79
,
1539
1541
, (
1974
).
You do not currently have access to this content.