Spin-electron-acoustic waves (sometimes called spin-plasmons) can be found in degenerate electron gases if spin-up electrons and spin-down electrons move relatively each other. Here, we suggest relativistic hydrodynamics with separate spin evolution, which allows us to study linear and nonlinear spin-electron-acoustic waves, including the spin-electron-acoustic solitons. The presented hydrodynamic model is the corresponding generalization of the relativistic hydrodynamic model with the average reverse gamma factor evolution, which consists of equations for evolution of the following functions: the partial concentrations (for spin-up electrons and spin-down electrons), the partial velocity fields, the partial average reverse relativistic gamma factors, and the partial flux of the reverse relativistic gamma factors. We find that the relativistic effects decrease the phase velocity of spin-electron-acoustic waves. Numerical analysis of the changes of dispersion curves of the Langmuir wave, spin-electron-acoustic wave, and ion-acoustic wave under the change of the spin polarization of electrons is presented. It is demonstrated that dispersion curves of the Langmuir wave and spin-electron-acoustic wave get closer to each other in the relativistic limit. Spin dependence of the amplitude and width of the relativistic spin-electron-acoustic soliton is demonstrated as well. Reformation of the bright soliton of potential of the electric field into the dark soliton under the influence of the relativistic effects is found.

1.
P. A.
Andreev
, “
Separated spin-up and spin-down quantum hydrodynamics of degenerated electrons
,”
Phys. Rev. E
91
,
033111
(
2015
).
2.
P. A.
Andreev
and
L. S.
Kuz'menkov
, “
Oblique propagation of longitudinal waves in magnetized spin-1/2 plasmas: Independent evolution of spin-up and spin-down electrons
,”
Ann. Phys.
361
,
278
(
2015
).
3.
P. A.
Andreev
and
Z.
Iqbal
, “
Rich eight-branch spectrum of the oblique propagating longitudinal waves in partially spin-polarized electron-positron-ion plasmas
,”
Phys. Rev. E
93
,
033209
(
2016
).
4.
P. A.
Andreev
and
L. S.
Kuz'menkov
, “
Surface spin-electron acoustic waves in magnetically ordered metals
,”
Appl. Phys. Lett.
108
,
191605
(
2016
).
5.
P. A.
Andreev
and
L. S.
Kuz'menkov
, “
Separated spin-up and spin-down evolution of degenerated electrons in two-dimensional systems: Dispersion of longitudinal collective excitations in plane and nanotube geometry
,”
Eur. Phys. Lett.
113
,
17001
(
2016
).
6.
Z.
Iqbal
and
P. A.
Andreev
, “
Nonlinear separate spin evolution in degenerate electron-positron-ion plasmas
,”
Phys. Plasmas
23
,
062320
(
2016
).
7.
M.
Shahid
,
Z.
Iqbal
,
M.
Jamil
, and
G.
Murtaza
, “
Raman three-wave interaction for the O-mode, Shear Alfven wave and the electron plasma perturbations
,”
Phys. Plasmas
24
,
102113
(
2017
).
8.
Z.
Iqbal
and
G.
Murtaza
, “
Electrostatic solitary structure of the SEAWs is studied at the oblique propagation of the weakly-nonlinear waves
,”
Phys. Lett A
382
,
44
(
2018
).
9.
M. I.
Trukhanova
, “
Spin current evolution in the separated spin-up and spin-down quantum hydrodynamics
,”
Phys. Lett. A
379
,
2777
(
2015
).
10.
Z.
Iqbal
,
I. A.
Khan
, and
G.
Murtaza
, “
On the upper hybrid wave instability in a spin polarized degenerate plasma
,”
Phys. Plasmas
25
,
062121
(
2018
).
11.
Z.
Iqbal
,
M.
Jamil
, and
G.
Murtaza
, “
Langmuir instability in partially spin polarized bounded degenerate plasma
,”
Phys. Plasmas
25
,
042106
(
2018
).
12.
P. A.
Andreev
, “
Spin-electron acoustic waves: The Landau damping and ion contribution in the spectrum
,”
Phys. Plasmas
23
,
062103
(
2016
).
13.
P. A.
Andreev
and
L. S.
Kuz'menkov
, “
Dielectric permeability tensor and linear waves in spin-1/2 quantum kinetics with nontrivial equilibrium spin-distribution functions
,”
Phys. Plasmas
24
,
112108
(
2017
).
14.
P. A.
Andreev
, “
Kinetic analysis of spin current contribution to spectrum of electromagnetic waves in spin-1/2 plasma. I. Dielectric permeability tensor for magnetized plasmas
,”
Phys. Plasmas
24
,
022114
(
2017
).
15.
P. A.
Andreev
, “
Kinetic analysis of spin current contribution to spectrum of electromagnetic waves in spin-1/2 plasma. II. Dispersion dependencies
,”
Phys. Plasmas
24
,
022115
(
2017
).
16.
L. S.
Kuz'menkov
and
S. G.
Maksimov
, “
Quantum hydrodynamics of particle systems with Coulomb interaction and quantum Bohm potential
,”
Theor. Math. Phys.
118
,
227
(
1999
).
17.
L. S.
Kuz'menkov
,
S. G.
Maksimov
, and
V. V.
Fedoseev
, “
Microscopic quantum hydrodynamics of systems of fermions: Part I
,”
Theor. Math. Phys.
126
,
110
(
2001
).
18.
M.
Marklund
and
G.
Brodin
, “
Dynamics of spin-1/2 quantum plasmas
,”
Phys. Rev. Lett.
98
,
025001
(
2007
).
19.
G.
Brodin
and
M.
Marklund
, “
Spin magnetohydrodynamics
,”
New J. Phys.
9
,
277
(
2007
).
20.
G.
Brodin
,
M.
Marklund
, and
G.
Manfredi
, “
Quantum plasma effects in the classical regime
,”
Phys. Rev. Lett.
100
,
175001
(
2008
).
21.
G.
Brodin
,
M.
Marklund
,
J.
Zamanian
,
A.
Ericsson
, and
P. L.
Mana
, “
Effects of the g factor in semiclassical kinetic plasma theory
,”
Phys. Rev. Lett.
101
,
245002
(
2008
).
22.
G.
Brodin
,
A. P.
Misra
, and
M.
Marklund
, “
Spin contribution to the ponderomotive force in a plasma
,”
Phys. Rev. Lett.
105
,
105004
(
2010
).
23.
P. K.
Shukla
and
B.
Eliasson
, “
Nonlinear aspects of quantum plasma physics
,”
Phys. Usp.
53
,
51
(
2010
).
24.
P. K.
Shukla
and
B.
Eliasson
, “
Nonlinear collective interactions in quantum plasmas with degenerate electron fluids
,”
Rev. Mod. Phys.
83
,
885
(
2011
).
25.
S. M.
Mahajan
and
F. A.
Asenjo
, “
Vortical dynamics of spinning quantum plasmas: helicity conservation
,”
Phys. Rev. Lett.
107
,
195003
(
2011
).
26.
T.
Koide
, “
Spin-electromagnetic hydrodynamics and magnetization induced by spin-magnetic interaction
,”
Phys. Rev. C
87
,
034902
(
2013
).
27.
P. A.
Andreev
, “
Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas
,”
Phys. Plasmas
22
,
062113
(
2015
).
28.
Z.
Yoshida
and
S. M.
Mahajan
, “
Quantum spirals
,”
J. Phys. A
49
,
055501
(
2016
).
29.
D. A.
Uzdensky
and
S.
Rightley
, “
Plasma physics of extreme astrophysical environments
,”
Rep. Progr. Phys.
77
,
036902
(
2014
).
30.
D. E.
Ruiz
and
I. Y.
Dodin
, “
First-principle variational formulation of polarization effects in geometrical optics
,”
Phys. Rev. A
92
,
043805
(
2015
).
31.
R.
Ekman
,
F. A.
Asenjo
, and
J.
Zamanian
, “
Relativistic kinetic equation for spin-1/2 particles in the long-scale-length approximation
,”
Phys. Rev. E
96
,
023207
(
2017
).
32.
P. A.
Andreev
, “
Quantum hydrodynamic theory of quantum fluctuations in dipolar Bose–Einstein condensate
,”
Chaos
31
,
023120
(
2021
).
33.
P. A.
Andreev
,
IN.
Mosaki
, and
M. I.
Trukhanova
, “
Quantum hydrodynamics of the spinor Bose-Einstein condensate at non-zero temperatures
,”
Phys. Fluids
33
,
067108
(
2021
).
34.
P. A.
Andreev
, “
On the interaction constant measurement of polarized fermions via sound wave spectra obtained from hydrodynamics with the pressure evolution equation
,” arXiv:1912.00843 (
2019
).
35.
P. A.
Andreev
, “
Hydrodynamics of quantum corrections to the Coulomb interaction via the third rank tensor evolution equation: Application to Langmuir waves and spin-electron acoustic waves
,”
J. Plasma Phys.
87
,
905870511
(
2021
).
36.
P. A.
Andreev
, “
Relativistic hydrodynamic model with the average reverse gamma factor evolution for the degenerate plasmas: High-density ion-acoustic solitons
,”
Phys. Plasmas
29
,
062109
(
2022
).
37.
P. A.
Andreev
, “
On the structure of relativistic hydrodynamics for hot plasmas
,”
Phys. Scr.
97
,
085602
(
2022
).
38.
P. A.
Andreev
, “
Microscopic model for relativistic hydrodynamics of ideal plasmas
,” arXiv:2109.14050 (
2021
).
39.
P. A.
Andreev
, “
Waves propagating parallel to the magnetic field in relativistically hot plasmas: A hydrodynamic models
,” arXiv:2106.14327 (
2021
).
40.
P. A.
Andreev
, “
A hydrodynamic model of Alfvenic waves and fast magneto-sound in the relativistically hot plasmas at propagation parallel to the magnetic field
,” arXiv:2108.12721 (
2021
).
41.
L. S.
Kuz'menkov
, “
Field form of dynamics and statistics of systems of particles with electromagnetic interaction
,”
Theor. Math. Phys.
86
,
159
(
1991
).
42.
M. A.
Drofa
and
L. S.
Kuz'menkov
, “
Continual approach to multiparticle systems with long-range interaction. Hierarchy of macroscopic fields and physical consequences
,”
Theor. Math. Phys.
108
,
849
(
1996
).
43.
L. S.
Kuz'menkov
and
P. A.
Andreev
, “
Microscopic classic hydrodynamic and methods of averaging
,” in paper presented in
PIERS Proceedings
, Moscow, Russia, August 19–23,
2012
.
44.
F. A.
Asenjo
,
V.
Munoz
,
J. A.
Valdivia
, and
S. M.
Mahajan
, “
A hydrodynamical model for relativistic spin quantum plasmas
,”
Phys. Plasmas
18
,
012107
(
2011
).
45.
J. C.
Ryan
, “
Collective excitations in a spin-polarized quasi-two-dimensional electron gas
,”
Phys. Rev. B
43
,
4499
(
1991
).
46.
A.
Agarwal
,
M.
Polini
,
R.
Fazio
, and
G.
Vignale
, “
Persistent spin oscillations in a spin-orbit-coupled superconductor
,”
Phys. Rev. Lett.
107
,
077004
(
2011
).
47.
A.
Agarwal
,
M.
Polini
,
G.
Vignale
, and
M. E.
Flatte
, “
Long-lived spin plasmons in a spin-polarized two-dimensional electron gas
,”
Phys. Rev. B
90
,
155409
(
2014
).
48.
F.
Perez
, “
Spin-polarized two-dimensional electron gas embedded in a semimagnetic quantum well: Ground state, spin responses, spin excitations, and Raman spectrum
,”
Phys. Rev. B
79
,
045306
(
2009
).
49.
R.
Hakim
,
Introduction to Relativistic Statistical Mechanics Classical and Quantum
(
World Scientific Publishing
,
2011
).
50.
N. L.
Shatashvili
,
J. I.
Javakhishvili
, and
H.
Kaya
, “
Nonlinear wave dynamics in two-temperature electron-positron-ion plasma
,”
Astrophys. Space Sci.
250
,
109
(
1997
).
51.
S. M.
Mahajan
, “
Temperature-transformed ‘minimal coupling’: Magnetofluid unification
,”
Phys. Rev. Lett.
90
,
035001
(
2003
).
52.
S. M.
Mahajan
and
Z.
Yoshida
, “
Relativistic generation of vortex and magnetic field
,”
Phys. Plasmas
18
,
055701
(
2011
).
53.
J.
Heyvaerts
,
T.
Lehner
, and
F.
Mottez
, “
Non-linear simple relativistic Alfvén waves in astrophysical plasmas
,”
Astron. Astrophys.
542
,
A128
(
2012
).
54.
F. A.
Asenjo
and
L.
Comisso
, “
Gravitational electromotive force in magnetic reconnection around Schwarzschild black holes
,”
Phys. Rev. D
99
,
063017
(
2019
).
55.
N. L.
Shatashvili
,
S. M.
Mahajan
, and
V. I.
Berezhiani
, “
Nonlinear coupling of electromagnetic and electron acoustic waves in multi-species degenerate astrophysical plasma
,”
Phys. Plasmas
27
,
012903
(
2020
).
56.
L.
Comisso
and
F. A.
Asenjo
, “
Thermal-inertial effects on magnetic reconnection in relativistic pair plasmas
,”
Phys. Rev. Lett.
113
,
045001
(
2014
).
57.
Z. Y.
Liu
,
Y. Z.
Zhang
, and
S. M.
Mahajan
, “
The effect of curvature induced broken potential vorticity conservation on drift wave turbulences
,”
Plasma Phys. Controlled Fusion
63
,
045009
(
2021
).
58.
L.
Comisso
and
F. A.
Asenjo
, “
Generalized magnetofluid connections in curved spacetime
,”
Phys. Rev. D
102
,
023032
(
2020
).
59.
S. M.
Mahajan
and
F. A.
Asenjo
, “
A statistical model for relativistic quantum fluids interacting with an intense electromagnetic wave
,”
Phys. Plasmas
23
,
056301
(
2016
).
60.
G.
Brunetti
,
P.
Blasi
,
R.
Cassano
, and
S.
Gabici
, “
Alfvenic reacceleration of relativistic particles in galaxy clusters: MHD waves, leptons and hadrons
,”
Mon. Not. R. Astron. Soc.
350
,
1174
1194
(
2004
).
61.
S. M.
Mahajan
and
F. A.
Asenjo
, “
Hot fluids and nonlinear quantum mechanics
,”
Int. J. Theor. Phys.
54
,
1435
(
2014
).
62.
J. T.
Mendonca
, “
Wave kinetics of relativistic quantum plasmas
,”
Phys. Plasmas
18
,
062101
(
2011
).
63.
J.
Zhu
and
P.
Ji
, “
Dispersion relation and Landau damping of waves in high-energy density plasmas
,”
Plasma Phys. Controlled Fusion
54
,
065004
(
2012
).
64.
V.
Muñoz
,
T.
Hada
, and
S.
Matsukiyo
, “
Kinetic effects on the parametric decays of Alfvén waves in relativistic pair plasmas
,”
Earth, Planets Space
58
,
1213
(
2006
).
65.
G. S.
Lakhina
,
S.
Singh
,
R.
Rubia
, and
S.
Devanandhan
, “
Electrostatic solitary structures in space plasmas: Soliton perspective
,”
Plasma
4
,
681
(
2021
).
You do not currently have access to this content.