We demonstrate the application of data-driven linear operator construction for time advance with a goal of accelerating plasma physics simulation. We apply dynamic mode decomposition (DMD) to data produced by the nonlinear SOLPS-ITER (Scrape-off Layer Plasma Simulator - International Thermonuclear Experimental Reactor) plasma boundary code suite in order to estimate a series of linear operators and monitor their predictive accuracy via online error analysis. We find that this approach defines when these dynamics can be represented by a sequence of approximate linear operators and is essential for providing consistent projections when compared to an unconstrained application. For linear diffusion and advection–diffusion fluid test problems, we construct and apply operators within explicit and implicit time advance schemes, demonstrating that stability can be robustly guaranteed in each case. We further investigate the use of the linear time advance operators within several integration methods including forward Euler, backward Euler, and the matrix exponential. The application of this method to simulation data from SOLPS-ITER, with varying levels of Markov chain Monte Carlo numerical noise, shows that constrained DMD operators yield a capability to identify, extract, and integrate a (slow) subset of the present timescales. Example applications show that for projected speedup factors of 2 × , 4 ×, and 8 ×, a mean relative error of 3%, 5%, and 8% and maximum relative error less than 20% are achievable, which appears acceptable for typical SOLPS-ITER steady-state simulations.

1.
P.
Bonoli
and
L.
McInnes
, “
Report of the workshop on integrated simulations for magnetic fusion energy sciences
,” Technical Report (
DOE Office of Science
,
Rockville, MD
,
2015
), https://science.osti.gov/-/media/fes/pdf/workshop-reports/2016/ISFusionWorkshopReport_11-12-2015.pdf.
2.
C. S.
Chang
,
S.
Klasky
,
J.
Cummings
,
R.
Samtaney
,
A.
Shoshani
,
L.
Sugiyama
,
D.
Keyes
,
S.
Ku
,
G.
Park
,
S.
Parker
,
N.
Podhorszki
 et al., “
Toward a first-principles integrated simulation of tokamak edge plasmas
,”
J. Phys.: Conf. Ser.
125
,
012042
(
2008
).
3.
E.
D'Azevedo
,
S.
Abbott
,
T.
Koskela
,
P.
Worley
,
S.-H.
Ku
,
S.
Ethier
,
E.
Yoon
,
M.
Shephard
,
R.
Hager
,
J.
Lang
,
J.
Choi
,
N.
Podhorszki
,
S.
Klasky
,
M.
Parashar
, and
C.-S.
Chang
, “
The fusion code XGC: Enabling kinetic study of multi-scale edge turbulent transport in ITER
,” in
Exascale Scientific Applications: Scalability and Performance Portability
, edited by
T. P.
Straatsma
,
K. B.
Antypas
, and
T. J.
Williams
(
Chapman and Hall/CRC
,
New York
,
2017
).
4.
C. S.
Chang
,
S.
Ku
,
A.
Loarte
,
V.
Parail
,
F.
Köchl
,
M.
Romanelli
,
R.
Maingi
,
J. W.
Ahn
,
T.
Gray
,
J.
Hughes
,
B.
LaBombard
,
T.
Leonard
,
M.
Makowski
, and
J.
Terry
, “
Gyrokinetic projection of the divertor heat-flux width from present tokamaks to ITER
,”
Nucl. Fusion
57
,
116023
(
2017
).
5.
Y.
Idomura
, “
Full-f gyrokinetic simulation over a confinement time
,”
Phys. Plasmas
21
,
022517
(
2014
).
6.
K.
Kim
,
C. S.
Chang
,
J.
Seo
,
S.
Ku
, and
W.
Choe
, “
What happens to full-f gyrokinetic transport and turbulence in a toroidal wedge simulation
,”
Phys. Plasmas
24
,
012306
(
2017
).
7.
J. B.
Parker
,
L. L.
LoDestro
,
D.
Told
,
G.
Merlo
,
L. F.
Ricketson
,
A.
Campos
,
F.
Jenko
, and
J. A. F.
Hittinger
, “
Bringing global gyrokinetic turbulence simulations to the transport timescale using a multiscale approach
,”
Nucl. Fusion
58
,
054004
(
2018
).
8.
D. R.
Zhang
,
Y. P.
Chen
,
X. Q.
Xu
, and
T. Y.
Xia
, “
Self-consistent simulation of transport and turbulence in tokamak edge plasma by coupling SOLPS-ITER and BOUT++
,”
Phys. Plasmas
26
,
012508
(
2019
).
9.
X.
Bonnin
,
W.
Dekeyser
,
R.
Pitts
,
D.
Coster
,
S.
Voskoboynikov
, and
S.
Wiesen
, “
Presentation of the new SOLPS-ITER code package for tokamak plasma edge modeling
,”
Plasma Fusion Res.
11
,
1403102
(
2016
).
10.
E.
Kaveeva
,
V.
Rozhansky
,
I.
Senichenkov
,
I.
Veselova
,
S.
Voskoboynikov
,
E.
Sytova
,
X.
Bonnin
, and
D.
Coster
, “
Speed-up of SOLPS-ITER code for tokamak edge modeling
,”
Nucl. Fusion
58
,
126018
(
2018
).
11.
M.
Blommaert
,
W.
Dekeyser
,
N.
Horsten
,
P.
Börner
, and
M.
Baelmans
, “
Implementation of a consistent fluid-neutral model in SOLPS-ITER and benchmark with EIRENE
,”
Contrib. Plasma Phys.
58
,
718
724
(
2018
).
12.
M.
Blommaert
,
N.
Horsten
,
P.
Börner
, and
W.
Dekeyser
, “
A spatially hybrid fluid-kinetic neutral model for SOLPS-ITER plasma edge simulations
,”
Nucl. Mater. Energy
19
,
28
33
(
2019
).
13.
M.
Blommaert
,
W.
Dekeyser
,
N.
Horsten
,
P.
Börner
, and
M.
Baelmans
, “
A hybrid fluid-kinetic neutral model based on a micro-macro decomposition in the SOLPS-ITER plasma edge code suite
,”
Contrib. Plasma Phys.
60
,
e201900132
(
2018
).
14.
D.
Samaddar
,
D. P.
Coster
,
X.
Bonnin
,
C.
Bergmeister
,
E. H.
ková
,
L. A.
Berry
,
W. R.
Elwasif
, and
D. B.
Batchelor
, “
Temporal parallelization of edge plasma simulations using the parareal algorithm and the SOLPS code
,”
Comput. Phys. Commun.
221
,
19
27
(
2017
).
15.
D.
Samaddar
,
D. P.
Coster
,
X.
Bonnin
,
L. A.
Berry
,
W. R.
Elwasif
, and
D. B.
Batchelor
, “
Application of the parareal algorithm to simulations of ELMS in ITER plasma
,”
Comput. Phys. Commun.
235
,
246
257
(
2019
).
16.
C.
Theodoropoulos
,
Y.-H.
Qian
, and
I. G.
Kevrekidis
, “
‘Coarse’ stability and bifurcation analysis using time-steppers: A reaction-diffusion example
,”
PNAS
97
,
9840
9843
(
2000
).
17.
C. W.
Gear
,
I. G.
Kevrekidis
, and
C.
Theodoropoulos
, “
‘Coarse’ integration/bifurcation analysis via microscopic simulators: Micro-Galerkin methods
,”
Comput. Chem. Eng.
26
,
941
963
(
2002
).
18.
C. W.
Gear
and
I. G.
Kevrekidis
, “
Projective methods for stiff differential equations: Problems with gaps in their eigenvalue spectrum
,”
SIAM J. Sci. Comput.
24
,
1091
1106
(
2003
).
19.
C. W.
Gear
,
J. M.
Hyman
,
P. G.
Kevrekidid
,
I. G.
Kevrekidis
,
O.
Runborg
, and
C.
Theodoropoulos
, “
Equation-free, coarse-grained multiscale computation: Enabling microscopic simulators to perform system-level analysis
,”
Commun. Math. Sci.
1
,
715
762
(
2003
).
20.
I. G.
Kevrekidis
and
G.
Samaey
, “
Equation-free multiscale computation: Algorithms and applications
,”
Annu. Rev. Phys. Chem.
60
,
321
344
(
2009
).
21.
M. A.
Shay
,
J. F.
Drake
, and
B.
Dorland
, “
Equation free projective integration: A multiscale method applied to a plasma ion acoustic wave
,”
J. Comput. Phys.
226
,
571
585
(
2007
).
22.
P.
Cazeaux
and
J. S.
Hesthaven
, “
Projective multiscale time-integration for electrostatic particle-in-cell methods
,”
Comput. Phys. Commun.
236
,
34
50
(
2019
).
23.
B. J.
Sturdevant
,
S. E.
Parker
,
C. S.
Chang
, and
R.
Hager
, “
Verification of an improved equation-free projective integration method for neoclassical plasma-profile evolution in tokamak geometry
,”
Phys. Plasmas
27
,
032505
(
2020
).
24.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
25.
M.
Rathinam
and
L. R.
Petzold
, “
A new look at proper orthogonal decomposition
,”
SIAM J. Numer. Anal.
41
,
1893
1925
(
2003
).
26.
M. O.
Williams
,
P. J.
Schmid
, and
J. N.
Kutz
, “
Hybrid reduced-order integration with proper orthogonal decomposition and dynamic mode decomposition
,”
SIAM Multiscale Model. Simul.
11
,
522
544
(
2013
).
27.
J. H.
Tu
,
C. W.
Rowley
,
D. M.
Luchtenburg
,
S. L.
Brunton
, and
J. N.
Kutz
, “
On dynamic mode decomposition: Theory and applications
,”
J. Comput. Dyn.
1
,
391
421
(
2014
).
28.
S.
Bagheri
, “
Effects of weak noise on oscillating flows: Linking quality factor, Floquet modes, and Koopman spectrum
,”
Phys. Fluids
26
,
094104
(
2014
).
29.
P. J.
Schmid
, “
Dynamic mode decomposition and its variants
,”
Annu. Rev. Fluid Mech.
54
,
225
254
(
2022
).
30.
K. K.
Chen
,
J. H.
Tu
, and
C. W.
Rowley
, “
Variants of dynamic mode decomposition: Boundary condition, Koopman, and Fourier analyses
,”
J. Nonlinear Sci.
22
,
887
915
(
2012
).
31.
M. R.
Jovanović
,
P. J.
Schmid
, and
J. W.
Nichols
, “
Sparsity-promoting dynamic mode decomposition
,”
Phys. Fluids
26
,
024103
(
2014
).
32.
T.
Askham
and
J. N.
Kutz
, “
Variable projection methods for an optimized dynamic mode decomposition
,”
SIAM J. Appl. Dyn. Syst.
17
,
380
416
(
2018
).
33.
D.
Sashidhar
and
J. N.
Kutz
, “
Bagging, optimized dynamic mode decomposition for robust, stable forecasting with spatial and temporal uncertainty quantification
,”
Philos. Trans. R. Soc. A
380
,
20210199
(
2022
).
34.
J. N.
Kutz
,
X.
Fu
, and
S. L.
Brunton
, “
Multi-resolution dynamic mode decomposition
,”
SIAM J. Appl. Dyn. Syst.
15
,
713
735
(
2016
).
35.
S. L.
Clainche
and
J. M.
Vega
, “
Higher order dynamic mode decomposition
,”
SIAM J. Appl. Dyn. Syst.
16
,
882
925
(
2017
).
36.
D.
Dylewski
,
M.
Tao
, and
J. N.
Kutz
, “
Dynamic mode decomposition for multiscale nonlinear physics
,”
Phys. Rev. E
99
,
063311
(
2019
).
37.
R.
Taylor
,
J. N.
Kutz
,
K.
Morgan
, and
B. A.
Nelson
, “
Dynamic mode decomposition for plasma diagnostics and validation
,”
Rev. Sci. Instrum.
89
,
053501
(
2018
).
38.
A. A.
Kaptanoglu
,
K. D.
Morgan
,
C. J.
Hansen
, and
S. L.
Brunton
, “
Characterizing magnetized plasmas with dynamic mode decomposition
,”
Phys. Plasmas
27
,
032108
(
2020
).
39.
N.
Andersson
and
L.-E.
Eriksson
, “
A novel solver acceleration technique based on dynamic mode decomposition
,” in
Proceedings of the 6th European Conference on Computational Fluid Dynamics
(
European Community on Computational Methods in Applied Sciences
,
2014
), pp.
4832
4851
.
40.
S.
Benkadda
,
T. D.
de Wit
,
A.
Verga
,
A.
Sen
,
ASDEX team
, and
X.
Garbet
, “
Characterization of coherent structures in tokamak edge turbulence
,”
Phys. Rev. Lett.
73
,
3403
3406
(
1994
).
41.
T. D.
de Wit
,
A. L.
Pecquet
, and
J. C.
Vallet
, “
The biorthogonal decomposition as a tool for investigating fluctuations in plasmas
,”
Phys. Plasmas
1
,
3288
(
1994
).
42.
P.
Overschee
and
B.
Moor
,
Subspace Identification for Linear Systems
(
Springer
,
1996
).
43.
Y. V.
Mitrishkin
and
V. A.
Ivanov
, “
Combined nonlinear tokamak plasma current profile control system design and simulation with input constraints
,”
IFAC Proc. Vol.
44
,
3728
3733
(
2011
).
44.
J. P.
Levesque
,
N.
Rath
,
D.
Shiraki
,
S.
Angelini
,
J.
Bialek
,
P. J.
Byrne
,
B. A.
DeBono
,
P. E.
Hughes
,
M. E.
Mauel
,
G. A.
Navratil
,
Q.
Peng
,
D. J.
Rhodes
, and
C. C.
Stoafer
, “
Multimode observations and 3d magnetic control of the boundary of a tokamak plasma
,”
Nucl. Fusion
53
,
073037
(
2013
).
45.
K. E.
Olofsson
,
J. M.
Hanson
,
D.
Shiraki
,
F. A.
Volpe
,
D. A.
Humphreys
,
R. J. L.
Haye
,
M. J.
Lanctot
,
E. J.
Strait
,
A. S.
Welander
, and
E.
Koleman
, “
Array magnetics modal analysis for the DIII-D tokamak based on localized time-series modelling
,”
Plasma Phys. Controlled Fusion
56
,
095012
(
2014
).
46.
C.
Galperti
,
C.
Marchetto
,
E.
Alessi
,
D.
Minelli
,
M.
Mosconi
,
F.
Belli
,
L.
Boncagni
,
A.
Botrugo
,
P.
Buratti
,
G.
Calabro
,
B.
Esposito
,
S.
Garavaglia
,
G.
Granucci
,
A.
Grosso
,
V.
Mellera
,
A.
Moro
,
V.
Piergotti
,
G.
Pucella
,
G.
Ramogida
,
W.
Bin
, and
C.
Sozzi
, “
Development of real-time MHD markers based on biorthogonal decomposition of signals from Mirnov coils
,”
Plasma Phys. Controlled Fusion
56
,
114012
(
2014
).
47.
N. D.
Farahani
and
F. A.
Davani
, “
Simulation of open-loop plasma vertical movement response in the Damavand tokamak using closed-loop subspace system identification
,”
J. Instrum.
11
,
P02006
(
2016
).
48.
H.
Mehrniya
,
M. K.
Salem
, and
A. S.
Elahi
, “
Evaluation of tokamak MHD instabilities by instability indices investigating such as entropy
,”
J. Fusion Energy
41
,
19
(
2022
).
49.
C.
Eckart
and
G.
Young
, “
The approximation of one matrix by another of lower rank
,”
Psychometrika
1
,
211
218
(
1936
).
50.
L.
Mirsky
, “
Symmetric gauge functions and unitarily invariant norms
,”
Q. J. Math.
11
,
50
59
(
1960
).
51.
E.
D'Azevedo
,
D. L.
Green
, and
L.
Mu
, “
Discontinuous Galerkin sparse grids methods for time domain Maxwell's equations
,”
Comput. Phys. Commun.
256
,
107412
(
2020
).
52.
Z.
Wang
,
Q.
Tang
,
W.
Guo
, and
Y.
Cheng
, “
Sparse grid discontinuous Galerkin methods for high-dimensional elliptic equations
,”
J. Comput. Phys.
314
,
244
263
(
2016
).
53.
W.
Guo
and
Y.
Cheng
, “
An adaptive multiresolution discontinuous Galerkin method for time-dependent transport equations in multidimensions
,”
SIAM J. Sci. Comput.
39
,
A2962
A2992
(
2017
).
54.
Z.
Tao
,
W.
Guo
, and
Y.
Cheng
, “
Sparse grid discontinuous Galerkin methods for the Vlasov-Maxwell system
,”
J. Comput. Phys.: X
3
,
100022
(
2019
).
55.
J. R.
Dormand
and
P. J.
Prince
, “
A family of embedded Runge-Kutta formulae
,”
J. Comput. Appl. Math.
6
,
19
26
(
1980
).
56.
L. F.
Shampine
and
M. W.
Reichelt
, “
The matlab ODE suite
,”
SIAM J. Sci. Comput.
18
,
1
22
(
1997
).
57.
S.
Wiesen
,
S.
Brezinsek
,
X.
Bonnin
,
E.
Delabie
,
L.
Frassinetti
,
M.
Groth
,
C.
Guillemaut
,
J.
Harrison
,
D.
Harting
,
S.
Henderson
,
A.
Huber
,
U.
Kruezi
,
R. A.
Pitts
,
M.
Wischmeier
, and
J.
contributors
, “
On the role of finite grid extent in SOLPS-ITER edge plasma simulations for jet h-mode discharges with metallic wall
,”
Nucl. Mater. Energy
17
,
174
181
(
2018
).
58.
E.
Kaveeva
,
V.
Rozhansky
,
I.
Senichenkov
,
E.
Sytova
,
I.
Veselova
,
S.
Voskoboynikov
,
X.
Bonnin
,
R. A.
Pitts
,
A. S.
Kukushkin
,
S.
Wiesen
, and
D.
Coster
, “
SOLPS-ITER modeling of ITER edge plasma with drifts and currents
,”
Nucl. Fusion
60
,
046019
(
2020
).
You do not currently have access to this content.