The ion exit flow speed at the sheath entrance is constrained by the Bohm criterion, which is used as a boundary condition for simulations that do not resolve the sheath region. Traditional Bohm criterion analysis invokes the equation of state and, thus, ignores transport physics in the sheath transition problem. An expression for the Bohm speed away from the asymptotic limit is derived from a set of anisotropic plasma transport equations. The thermal force, collisional temperature isotropization, and heat flux enter into the evaluation of the Bohm speed. By comparison with kinetic simulation results, this expression is shown to be accurate in the presheath–sheath transition region rather than a single point at the sheath entrance over a broad range of collisionality.

1.
K.-U.
Riemann
, “
The Bohm criterion and sheath formation
,”
J. Phys. D
24
,
493
518
(
1991
).
2.
V.
Rozhansky
,
E.
Kaveeva
,
P.
Molchanov
,
I.
Veselova
,
S.
Voskoboynikov
,
D.
Coster
,
G.
Counsell
,
A.
Kirk
, and
S.
Lisgo
, “
New B2SOLPS5.2 transport code for h-mode regimes in tokamaks
,”
Nucl. Fusion
49
,
025007
(
2009
).
3.
F.
Halpern
,
P.
Ricci
,
S.
Jolliet
,
J.
Loizu
,
J.
Morales
,
A.
Mosetto
,
F.
Musil
,
F.
Riva
,
T.
Tran
, and
C.
Wersal
, “
The GBS code for tokamak scrape-off layer simulations
,”
J. Comput. Phys.
315
,
388
408
(
2016
).
4.
R.
Schneider
,
X.
Bonnin
,
K.
Borrass
,
D. P.
Coster
,
H.
Kastelewicz
,
D.
Reiter
,
V. A.
Rozhansky
, and
B. J.
Braams
, “
Plasma edge physics with B2-eirene
,”
Contrib. Plasma Phys.
46
,
3
191
(
2006
).
5.
D.
Bohm
, “
The characteristics of electrical discharges in magnetic fields
,” in Qualitative Description of the Arc Plasma in a Magnetic Field, edited by A. Guthrie and R. K. Wakerling (
McGraw-Hill
,
New York, NY
,
1949
).
6.
S. D.
Baalrud
,
B.
Scheiner
,
B.
Yee
,
M.
Hopkins
, and
E.
Barnat
, “
Extensions and applications of the Bohm criterion
,”
Plasma Phys. Controlled Fusion
57
,
044003
(
2015
).
7.
X.-Z.
Tang
and
Z.
Guo
, “
Critical role of electron heat flux on Bohm criterion
,”
Phys. Plasmas
23
,
120701
(
2016
).
8.
L.
Tonks
and
I.
Langmuir
, “
A general theory of the plasma of an arc
,”
Phys. Rev.
34
,
876
922
(
1929
).
9.
K.-U.
Riemann
, “
The bohm criterion and boundary conditions for a multicomponent system
,”
IEEE Trans. Plasma Sci.
23
,
709
716
(
1995
).
10.
X.-Z.
Tang
and
Z.
Guo
, “
Kinetic model for the collisionless sheath of a collisional plasma
,”
Phys. Plasmas
23
,
083503
(
2016
).
11.
P. C.
Stangeby
,
The Plasma Boundary of Magnetic Fusion Devices
(
Taylor & Francis
,
2000
).
12.
X.-Z.
Tang
and
Z.
Guo
, “
Sheath energy transmission in a collisional plasma with collisionless sheath
,”
Phys. Plasmas
22
,
100703
(
2015
).
13.
S. A.
Self
and
H. N.
Ewald
, “
Static theory of a discharge column at intermediate pressures
,”
Phys. Fluids
9
,
2486
2492
(
1966
).
14.
R. C.
Bissell
,
P. C.
Johnson
, and
P. C.
Stangeby
, “
A review of models for collisionless one-dimensional plasma flow to a boundary
,”
Phys. Fluids B Phys.
1
,
1133
1140
(
1989
).
15.
P.
Cagas
,
A.
Hakim
,
J.
Juno
, and
B.
Srinivasan
, “
Continuum kinetic and multi-fluid simulations of classical sheaths
,”
Phys. Plasmas
24
,
022118
(
2017
).
16.
P.
Cagas
,
A. H.
Hakim
, and
B.
Srinivasan
, “
A boundary value ‘reservoir problem’ and boundary conditions for multi-moment multifluid simulations of sheaths
,”
Phys. Plasmas
28
,
014501
(
2021
).
17.
X. Z.
Tang
, “
Kinetic magnetic dynamo in a sheath-limited high-temperature and low-density plasma
,”
Plasma Phys. Controlled Fusion
53
,
082002
(
2011
).
18.
R. N.
Franklin
and
J. R.
Ockendon
, “
Asymptotic matching of plasma and sheath in an active low pressure discharge
,”
J. Plasma Phys.
4
,
371
385
(
1970
).
19.
R. N.
Franklin
, “
Whereisthe sheath edge?
,”
J. Phys. D
37
,
1342
1345
(
2004
).
20.
B. B. K.
Bowers
,
B. J.
Albright
, and
T.
Kwan
, “
Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation
,”
Phys. Plasmas
10
(
1
),
183
(
2008
).
21.
K.-U.
Riemann
, “
The influence of collisions on the plasma sheath transition
,”
Phys. Plasmas
4
,
4158
4166
(
1997
).
22.
S. I.
Braginskii
, “
Transport Processes in a Plasma
,”
Rev. Plasma Phys.
1
,
205
(
1965
).
23.
G. F.
Chew
,
M. L.
Goldberger
,
F. E.
Low
, and
S.
Chandrasekhar
, “
The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions
,”
Proc. R. Soc. London, Ser. A
236
,
112
118
(
1956
).
24.
R.
Chodura
and
F.
Pohl
, “
Hydrodynamic equations for anisotropic plasmas in magnetic fields. II. transport equations including collisions
,”
Plasma Phys.
13
,
645
658
(
1971
).
25.
Z.
Guo
and
X.-Z.
Tang
, “
Parallel transport of long mean-free-path plasmas along open magnetic field lines: Plasma profile variation
,”
Phys. Plasmas
19
,
082310
(
2012
).
26.
Y.
Li
,
B.
Srinivasan
,
Y.
Zhang
, and
X.-Z.
Tang
, “
Bohm criterion of plasma sheaths away from asymptotic limits
,”
Phys. Rev. Lett.
128
,
085002
(
2022
).
27.
T.
Takizuka
and
H.
Abe
, “
A binary collision model for plasma simulation with a particle code
,”
J. Comput. Phys.
25
,
205
219
(
1977
).
You do not currently have access to this content.