We present test-particle simulations of electrons during a nonlinear magnetohydrodynamic (MHD) simulation of a type-I edge localized mode to explore the effect of an eruptive plasma filament on the kinetic level. The electrons are moderately heated and accelerated during the filamentary eruption on a fast timescale of the order of 0.5 ms. A clearly non-thermal tail is formed in the distribution of the kinetic energy that is of power-law shape and reaches 90 keV for some particles. The acceleration is exclusively observed in the direction parallel to the magnetic field, i.e., with a clear preference in countercurrent direction, and we show that the parallel electric field is the cause of the observed acceleration. Most particles that escape from the system leave at one distinct strike-line in the outer divertor leg at some time during their energization. The escaping high-energy electrons in the tail of the energy distribution are not affected by collisions; thus, they show characteristics of runaway electrons. The mean square displacement indicates that transport in energy space clearly is superdiffusive, and interpreting the acceleration process as a random walk, we find that the distributions of energy-increments exhibit exponential tails, and transport in energy space is equally important of convective (systematic) and diffusive (stochastic) nature. By analyzing the MHD simulations per se, it turns out that the histograms of the parallel electric field in the edge region exhibit power-law shapes, and this clearly non-Gaussian statistics is ultimately one of the reasons for the moderately anomalous phenomena of particle transport that we find in energy space.

1.
D.
Biskamp
and
H.
Welter
, “
Dynamics of decaying two-dimensional magnetohydrodynamic turbulence
,”
Phys. Fluids B
1
,
1964
1979
(
1989
).
2.
P.
Dmitruk
,
W. H.
Matthaeus
,
N.
Seenu
, and
M. R.
Brown
, “
Test particle acceleration in three-dimensional magnetohydrodynamic turbulence
,”
Astrophys. J. Lett.
597
(
1
),
L81
(
2003
).
3.
K.
Arzner
,
B.
Knaepen
,
D.
Carati
,
N.
Denewet
, and
L.
Vlahos
, “
The effect of coherent structures on stochastic acceleration in MHD turbulence
,”
Astrophys. J.
637
,
322
332
(
2006
).
4.
S.
Servidio
,
W. H.
Matthaeus
,
M. A.
Shay
,
P. A.
Cassak
, and
P.
Dmitruk
, “
Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence
,”
Phys. Rev. Lett.
102
(
11
),
115003
(
2009
).
5.
S.
Servidio
,
W. H.
Matthaeus
,
M. A.
Shay
,
P.
Dmitruk
,
P. A.
Cassak
, and
M.
Wan
, “
Statistics of magnetic reconnection in two-dimensional magnetohydrodynamic turbulence
,”
Phys. Plasmas
17
(
3
),
032315
(
2010
).
6.
S.
Servidio
,
P.
Dmitruk
,
A.
Greco
,
M.
Wan
,
S.
Donato
,
P. A.
Cassak
,
M. A.
Shay
,
V.
Carbone
, and
W. H.
Matthaeus
, “
Magnetic reconnection as an element of turbulence
,”
Nonlinear Processes Geophys.
18
,
675
695
(
2011
).
7.
V.
Zhdankin
,
D. A.
Uzdensky
,
J. C.
Perez
, and
S.
Boldyrev
, “
Statistical Analysis of current sheets in three-dimensional magnetohydrodynamic turbulence
,”
Astrophs. J.
771
,
124
(
2013
).
8.
F.
Valentini
,
S.
Servidio
,
D.
Perrone
,
F.
Califano
,
W. H.
Matthaeus
, and
P.
Veltri
, “
Hybrid Vlasov–Maxwell simulations of two-dimensional turbulence in plasmas
,”
Phys. Plasmas
21
(
8
),
082307
(
2014
).
9.
H.
Karimabadi
,
V.
Roytershteyn
,
H. X.
Vu
,
Y. A.
Omelchenko
,
J.
Scudder
,
W.
Daughton
,
A.
Dimmock
,
K.
Nykyri
,
M.
Wan
,
D.
Sibeck
,
M.
Tatineni
,
A.
Majumdar
,
B.
Loring
, and
B.
Geveci
, “
The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas
,”
Phys. Plasmas
21
(
6
),
062308
(
2014
).
10.
S. S.
Cerri
and
F.
Califano
, “
Reconnection and small-scale fields in 2D-3V hybrid-kinetic driven turbulence simulations
,”
New J. Phys.
19
(
2
),
025007
(
2017
).
11.
H.
Isliker
,
L.
Vlahos
, and
D.
Constantinescu
, “
Fractional transport in strongly turbulent plasmas
,”
Phys. Rev. Lett.
119
(
4
),
045101
(
2017
).
12.
L.
Comisso
and
L.
Sironi
, “
The interplay of magnetically dominated turbulence and magnetic reconnection in producing nonthermal particles
,”
Astrophys. J.
886
(
2
),
122
(
2019
).
13.
J. A.
Agudelo Rueda
,
D.
Verscharen
,
R. T.
Wicks
,
C. J.
Owen
,
G.
Nicolaou
,
A. P.
Walsh
,
I.
Zouganelis
,
K.
Germaschewski
, and
S.
Vargas Domínguez
, “
Three-dimensional magnetic reconnection in particle-in-cell simulations of anisotropic plasma turbulence
,”
J. Plasma Phys.
87
(
3
),
905870228
(
2021
).
14.
W. H.
Matthaeus
and
S. L.
Lamkin
, “
Turbulent magnetic reconnection
,”
Phys. Fluids
29
,
2513
2534
(
1986
).
15.
W. H.
Matthaeus
and
M.
Velli
, “
Who needs turbulence? A review of turbulence effects in the heliosphere and on the fundamental process of reconnection
,”
Space Sci. Rev.
160
,
145
168
(
2011
).
16.
P. J.
Cargill
,
L.
Vlahos
,
G.
Baumann
,
J. F.
Drake
, and
Å.
Nordlund
, “
Current fragmentation and particle acceleration in solar flares
,”
Space Sci. Rev.
173
(
1-4
),
223
245
(
2012
).
17.
A.
Lazarian
,
L.
Vlahos
,
G.
Kowal
,
H.
Yan
,
A.
Beresnyak
, and
E. M.
de Gouveia Dal Pino
, “
Turbulence, magnetic reconnection in turbulent fluids and energetic particle acceleration
,”
Space Sci. Rev.
173
(
1-4
),
557
622
(
2012
).
18.
L.
Vlahos
and
H.
Isliker
, “
Particle acceleration and heating in a turbulent solar corona
,”
Plasma Phys. Controlled Fusion
61
(
1
),
014020
(
2019
).
19.
A.
Lazarian
,
G. L.
Eyink
,
A.
Jafari
,
G.
Kowal
,
H.
Li
,
S.
Xu
, and
E. T.
Vishniac
, “
3D turbulent reconnection: Theory, tests, and astrophysical implications
,”
Phys. Plasmas
27
(
1
),
012305
(
2020
).
20.
K.
Arzner
and
L.
Vlahos
, “
Particle acceleration in multiple dissipation regions
,”
Astrophys. J. Lett
605
(
1
),
L69
(
2004
).
21.
A.
Greco
,
W. H.
Matthaeus
,
S.
Servidio
,
P.
Chuychai
, and
P.
Dmitruk
, “
Statistical analysis of discontinuities in solar wind ACE data and comparison with intermittent MHD turbulence
,”
Astrophys. J.
691
(
2
),
L111
L114
(
2009
).
22.
V. M.
Uritsky
,
A.
Pouquet
,
D.
Rosenberg
,
P. D.
Mininni
, and
E. F.
Donovan
, “
Structures in magnetohydrodynamic turbulence: Detection and scaling
,”
Phys. Rev. E
82
(
5
),
056326
(
2010
).
23.
C.
Rossi
,
F.
Califano
,
A.
Retinò
,
L.
Sorriso-Valvo
,
P.
Henri
,
S.
Servidio
,
F.
Valentini
,
A.
Chasapis
, and
L.
Rezeau
, “
Two-fluid numerical simulations of turbulence inside Kelvin–Helmholtz vortices: Intermittency and reconnecting current sheets
,”
Phys. Plasmas
22
(
12
),
122303
(
2015
).
24.
E.
De Giorgio
,
S.
Servidio
, and
P.
Veltri
, “
Coherent structure formation through nonlinear interactions in 2D magnetohydrodynamic turbulence
,”
Sci. Rep.
7
,
13849
(
2017
).
25.
S.
Fadanelli
,
B.
Lavraud
,
F.
Califano
,
C.
Jacquey
,
Y.
Vernisse
,
I.
Kacem
,
E.
Penou
,
D. J.
Gershman
,
J.
Dorelli
,
C.
Pollock
,
B. L.
Giles
,
L. A.
Avanov
,
J.
Burch
,
M. O.
Chandler
,
V. N.
Coffey
,
J. P.
Eastwood
,
R.
Ergun
,
C. J.
Farrugia
,
S. A.
Fuselier
,
V. N.
Genot
,
E.
Grigorenko
,
H.
Hasegawa
,
Y.
Khotyaintsev
,
O.
Le Contel
,
A.
Marchaudon
,
T. E.
Moore
,
R.
Nakamura
,
W. R.
Paterson
,
T.
Phan
,
A. C.
Rager
,
C. T.
Russell
,
Y.
Saito
,
J. A.
Sauvaud
,
C.
Schiff
,
S. E.
Smith
,
S.
Toledo Redondo
,
R. B.
Torbert
,
S.
Wang
, and
S.
Yokota
, “
Four-spacecraft measurements of the shape and dimensionality of magnetic structures in the near-earth plasma environment
,”
J. Geophys. Res.
124
(
8
),
6850
6868
, (
2019
).
26.
M.
Sisti
,
S.
Fadanelli
,
S. S.
Cerri
,
M.
Faganello
,
F.
Califano
, and
O.
Agullo
, “
Characterizing current structures in 3D hybrid-kinetic simulations of plasma turbulence
,”
Astron. Astrophys.
655
,
A107
(
2021
).
27.
C. Y.
Tu
and
E.
Marsch
, “
Magnetohydrodynamic structures waves and turbulence in the solar wind—Observations and theories
,”
Space Sci. Rev.
73
(
1-2
),
1
210
(
1995
).
28.
B. K.
Shivamoggi
, “
Multi-fractal aspects of spatial intermittency in fully developed magnetohydrodynamic turbulence
,”
Ann. Phys.
253
(
2
),
239
264
(
1997
).
29.
D.
Biskamp
and
W.-C.
Müller
, “
Scaling properties of three-dimensional isotropic magnetohydrodynamic turbulence
,”
Phys. Plasmas
7
(
12
),
4889
4900
(
2000
).
30.
E.
Leonardis
,
S. C.
Chapman
,
W.
Daughton
,
V.
Roytershteyn
, and
H.
Karimabadi
, “
Identification of intermittent multifractal turbulence in fully kinetic simulations of magnetic reconnection
,”
Phys. Rev. Lett.
110
(
20
),
205002
(
2013
).
31.
D. A.
Schaffner
and
M. R.
Brown
, “
Multifractal and monofractal scaling in a laboratory MHD turbulence experiment
,”
Astrophys. J.
811
(
1
),
61
(
2015
).
32.
H.
Isliker
,
V.
Archontis
, and
L.
Vlahos
, “
Particle acceleration and heating in regions of magnetic flux emergence
,”
Astrophys. J.
882
(
1
),
57
(
2019
).
33.
N.
Sioulas
,
H.
Isliker
, and
L.
Vlahos
, “
Stochastic turbulent acceleration in a fractal environment
,”
Astrophys. J.
895
(
1
),
L14
(
2020
).
34.
G.
Kowal
,
E. M.
de Gouveia Dal Pino
, and
A.
Lazarian
, “
Magnetohydrodynamic simulations of reconnection and particle acceleration: Three-dimensional effects
,”
Astrophys. J.
735
,
102
(
2011
).
35.
W.
Daughton
,
V.
Roytershteyn
,
H.
Karimabadi
,
L.
Yin
,
B. J.
Albright
,
B.
Bergen
, and
K. J.
Bowers
, “
Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas
,”
Nat. Phys.
7
(
7
),
539
542
(
2011
).
36.
H.
Karimabadi
,
V.
Roytershteyn
,
W.
Daughton
, and
Y.-H.
Liu
, “
Recent evolution in the theory of magnetic reconnection and its connection with turbulence
,”
Space Sci. Rev.
178
(
2-4
),
307
323
(
2013
).
37.
J. S.
Oishi
,
M.-M.
Mac Low
,
D. C.
Collins
, and
M.
Tamura
, “
Self-generated turbulence in magnetic reconnection
,”
Astrophys. J.
806
(
1
),
L12
(
2015
).
38.
J. T.
Dahlin
,
J. F.
Drake
, and
M.
Swisdak
, “
Electron acceleration in three-dimensional magnetic reconnection with a guide field
,”
Phys. Plasmas
22
(
10
),
100704
(
2015
).
39.
G.
Kowal
,
D. A.
Falceta-Gonçalves
,
A.
Lazarian
, and
E. T.
Vishniac
, “
Statistics of reconnection-driven Turbulence
,”
Astrophys. J.
838
,
91
(
2017
).
40.
S.
Adhikari
,
M. A.
Shay
,
T. N.
Parashar
,
P.
Sharma Pyakurel
,
W. H.
Matthaeus
,
D.
Godzieba
,
J. E.
Stawarz
,
J. P.
Eastwood
, and
J. T.
Dahlin
, “
Reconnection from a turbulence perspective
,”
Phys. Plasmas
27
(
4
),
042305
(
2020
).
41.
D.
Burgess
,
P.
Hellinger
,
I.
Gingell
, and
P. M.
Trávníček
, “
Microstructure in two- and three-dimensional hybrid simulations of perpendicular collisionless shocks
,”
J. Plasma Phys.
82
(
4
),
905820401
(
2016
).
42.
E.
Martines
,
M.
Hron
, and
J.
Stöckel
, “
Coherent structures in the edge turbulence of the CASTOR tokamak
,”
Plasma Phys. Controlled Fusion
44
(
3
),
351
359
(
2002
).
43.
D.
Galassi
,
P.
Tamain
,
H.
Bufferand
,
G.
Ciraolo
,
P.
Ghendrih
,
C.
Baudoin
,
C.
Colin
,
N.
Fedorczak
,
N.
Nace
, and
E.
Serre
, “
Drive of parallel flows by turbulence and large-scale E × B transverse transport in divertor geometry
,”
Nucl. Fusion
57
(
3
),
036029
(
2017
).
44.
D.
Galassi
,
G.
Ciraolo
,
P.
Tamain
,
H.
Bufferand
,
P.
Ghendrih
,
N.
Nace
, and
E.
Serre
, “
Tokamak edge plasma turbulence interaction with magnetic x-point in 3D global simulations
,”
Fluids
4
(
1
),
50
(
2019
).
45.
X.
Garbet
,
P.
Mantica
,
F.
Ryter
,
G.
Cordey
,
F.
Imbeaux
,
C.
Sozzi
,
A.
Manini
,
E.
Asp
,
V.
Parail
,
R.
Wolf
, and
the JET EFDA Contributors,
Profile stiffness and global confinement
,”
Plasma Phys. Controlled Fusion
46
(
9
),
1351
1373
(
2004
).
46.
F.
Wagner
,
G.
Becker
,
K.
Behringer
,
D.
Campbell
,
A.
Eberhagen
,
W.
Engelhardt
,
G.
Fussmann
,
O.
Gehre
,
J.
Gernhardt
,
G. v
Gierke
,
G.
Haas
,
M.
Huang
,
F.
Karger
,
M.
Keilhacker
,
O.
Klüber
,
M.
Kornherr
,
K.
Lackner
,
G.
Lisitano
,
G. G.
Lister
,
H. M.
Mayer
,
D.
Meisel
,
E. R.
Müller
,
H.
Murmann
,
H.
Niedermeyer
,
W.
Poschenrieder
,
H.
Rapp
,
H.
Röhr
,
F.
Schneider
,
G.
Siller
,
E.
Speth
,
A.
Stäbler
,
K. H.
Steuer
,
G.
Venus
,
O.
Vollmer
, and
Z.
, “
Regime of improved confinement and high beta in neutral-beam-heated divertor discharges of the ASDEX tokamak
,”
Phys. Rev. Lett.
49
,
1408
1412
(
1982
).
47.
K. H.
Burrell
, “
Effects of E × B velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices
,”
Phys. Plasmas
4
(
5
),
1499
1518
(
1997
).
48.
H.
Zohm
, “
Edge localized modes (ELMs)
,”
Plasma Phys. Controlled Fusion
38
(
2
),
105
128
(
1996
).
49.
J. W.
Connor
, “
Edge-localized modes—physics and theory
,”
Plasma Phys. Controlled Fusion
40
(
5
),
531
542
(
1998
).
50.
A. W.
Leonard
, “
Edge-localized-modes in tokamaks
,”
Phys. Plasmas
21
(
9
),
090501
(
2014
).
51.
C.
Ham
,
A.
Kirk
,
S.
Pamela
, and
H.
Wilson
, “
Filamentary plasma eruptions and their control on the route to fusion energy
,”
Nat. Rev. Phys.
2
(
3
),
159
167
(
2020
).
52.
G. T. A.
Huysmans
and
O.
Czarny
, “
MHD stability in x-point geometry: Simulation of ELMs
,”
Nucl. Fusion
47
(
7
),
659
(
2007
).
53.
M. G.
Dunne
,
P. J.
McCarthy
,
E.
Wolfrum
,
R.
Fischer
,
L.
Giannone
,
A.
Burckhart
, and
the ASDEX Upgrade Team,
Measurement of neoclassically predicted edge current density at ASDEX upgrade
,”
Nucl. Fusion
52
(
12
),
123014
(
2012
).
54.
S. C.
Cowley
,
H.
Wilson
,
O.
Hurricane
, and
B.
Fong
, “
Explosive instabilities: From solar flares to edge localized modes in tokamaks
,”
Plasma Phys. Controlled Fusion
45
(
12A
),
A31
A38
(
2003
).
55.
W.
Fundamenski
,
V.
Naulin
,
T.
Neukirch
,
O. E.
Garcia
, and
J. J.
Rasmussen
, “
On the relationship between ELM filaments and solar flares
,”
Plasma Phys. Controlled Fusion
49
(
5
),
R43
R86
(
2007
).
56.
F.
Ebrahimi
, “
Nonlinear reconnecting edge localized modes in current-carrying plasmas
,”
Phys. Plasmas
24
(
5
),
056119
(
2017
).
57.
J.
Galdon-Quiroga
,
M.
Garcia-Munoz
,
K. G.
McClements
,
M.
Nocente
,
M.
Hoelzl
,
A. S.
Jacobsen
,
F.
Orain
,
J. F.
Rivero-Rodriguez
,
M.
Salewski
,
L.
Sanchis-Sanchez
,
W.
Suttrop
,
E.
Viezzer
,
the ASDEX Upgrade Team, and the Eurofusion MST1 Team,
Beam-ion acceleration during edge localized modes in the ASDEX upgrade tokamak
,”
Phys. Rev. Lett.
121
(
2
),
025002
(
2018
).
58.
A.
Loarte
,
G.
Saibene
,
R.
Sartori
,
D.
Campbell
,
M.
Becoulet
,
L.
Horton
,
T.
Eich
,
A.
Herrmann
,
G.
Matthews
,
N.
Asakura
,
A.
Chankin
,
A.
Leonard
,
G.
Porter
,
G.
Federici
,
G.
Janeschitz
,
M.
Shimada
, and
M.
Sugihara
, “
Characteristics of type I ELM energy and particle losses in existing devices and their extrapolation to ITER
,”
Plasma Phys. Controlled Fusion
45
(
9
),
1549
1569
(
2003
).
59.
T.
Eich
,
B.
Sieglin
,
A. J.
Thornton
,
M.
Faitsch
,
A.
Kirk
,
A.
Herrmann
, and
W.
Suttrop
, “
ELM divertor peak energy fluence scaling to ITER with data from JET, MAST and ASDEX upgrade
,”
Nucl. Mater. Energy
12
,
84
90
(
2017
).
60.
J. P.
Gunn
,
S.
Carpentier-Chouchana
,
F.
Escourbiac
,
T.
Hirai
,
S.
Panayotis
,
R. A.
Pitts
,
Y.
Corre
,
R.
Dejarnac
,
M.
Firdaouss
,
M.
Kočan
,
M.
Komm
,
A.
Kukushkin
,
P.
Languille
,
M.
Missirlian
,
W.
Zhao
, and
G.
Zhong
, “
Surface heat loads on the ITER divertor vertical targets
,”
Nucl. Fusion
57
(
4
),
046025
(
2017
).
61.
R.
Wenninger
,
F.
Arbeiter
,
J.
Aubert
,
L.
Aho-Mantila
,
R.
Albanese
,
R.
Ambrosino
,
C.
Angioni
,
J.-F.
Artaud
,
M.
Bernert
,
E.
Fable
,
A.
Fasoli
,
G.
Federici
,
J.
Garcia
,
G.
Giruzzi
,
F.
Jenko
,
P.
Maget
,
M.
Mattei
,
F.
Maviglia
,
E.
Poli
,
G.
Ramogida
,
C.
Reux
,
M.
Schneider
,
B.
Sieglin
,
F.
Villone
,
M.
Wischmeier
, and
H.
Zohm
, “
Advances in the physics basis for the European DEMO design
,”
Nucl. Fusion
55
(
6
),
063003
(
2015
).
62.
G. T. A.
Huijsmans
,
C. S.
Chang
,
N.
Ferraro
,
L.
Sugiyama
,
F.
Waelbroeck
,
X. Q.
Xu
,
A.
Loarte
, and
S.
Futatani
, “
Modelling of edge localised modes and edge localised mode control
,”
Phys. Plasmas
22
(
2
),
021805
(
2015
).
63.
S. J. P.
Pamela
,
G. T. A.
Huijsmans
,
T.
Eich
,
S.
Saarelma
,
I.
Lupelli
,
C. F.
Maggi
,
C.
Giroud
,
I. T.
Chapman
,
S. F.
Smith
,
L.
Frassinetti
,
M.
Becoulet
,
M.
Hoelzl
,
F.
Orain
,
S.
Futatani
, and
J. E. T.
Contributors
, “
Recent progress in the quantitative validation of JOREK simulations of ELMs in JET
,”
Nucl. Fusion
57
(
7
),
076006
(
2017
).
64.
A.
Cathey
,
M.
Hoelzl
,
K.
Lackner
,
G. T. A.
Huijsmans
,
M. G.
Dunne
,
E.
Wolfrum
,
S. J. P.
Pamela
,
F.
Orain
, and
S.
Günter
, “
Non-linear extended MHD simulations of type-I edge localised mode cycles in ASDEX Upgrade and their underlying triggering mechanism
,”
Nucl. Fusion
60
(
12
),
124007
(
2020
).
65.
M.
Garcia-Munoz
,
S.
Äkäslompolo
,
P.
de Marne
,
M. G.
Dunne
,
R.
Dux
,
T. E.
Evans
,
N. M.
Ferraro
,
S.
Fietz
,
C.
Fuchs
,
B.
Geiger
,
A.
Herrmann
,
M.
Hoelzl
,
B.
Kurzan
,
N.
Lazanyi
,
R. M.
McDermott
,
M.
Nocente
,
D. C.
Pace
,
M.
Rodriguez-Ramos
,
K.
Shinohara
,
E.
Strumberger
,
W.
Suttrop
,
M. A.
Van Zeeland
,
E.
Viezzer
,
M.
Willensdorfer
, and
E.
Wolfrum
, “
Fast-ion losses induced by ELMs and externally applied magnetic perturbations in the ASDEX upgrade tokamak
,”
Plasma Phys. Controlled Fusion
55
(
12
),
124014
(
2013
).
66.
M.
Garcia-Munoz
,
S.
Äkäslompolo
,
O.
Asunta
,
J.
Boom
,
X.
Chen
,
I. G. J.
Classen
,
R.
Dux
,
T. E.
Evans
,
S.
Fietz
,
R. K.
Fisher
,
C.
Fuchs
,
B.
Geiger
,
M.
Hoelzl
,
V.
Igochine
,
Y. M.
Jeon
,
J.
Kim
,
J. Y.
Kim
,
B.
Kurzan
,
N.
Lazanyi
,
T.
Lunt
,
R. M.
McDermott
,
M.
Nocente
,
D. C.
Pace
,
T. L.
Rhodes
,
M.
Rodriguez-Ramos
,
K.
Shinohara
,
W.
Suttrop
,
M. A.
Van Zeeland
,
E.
Viezzer
,
M.
Willensdorfer
,
E.
Wolfrum
,
the ASDEX Upgrade, DIII-D, and KSTAR Teams
, “
Fast-ion redistribution and loss due to edge perturbations in the ASDEX Upgrade, DIII-D, and KSTAR tokamaks
,”
Nucl. Fusion
53
(
12
),
123008
(
2013
).
67.
C.
Sommariva
,
E.
Nardon
,
P.
Beyer
,
M.
Hoelzl
,
G. T. A.
Huijsmans
,
D.
van Vugt
, and
J. E. T.
Contributors
, “
Test particles dynamics in the JOREK 3D non-linear MHD code and application to electron transport in a disruption simulation
,”
Nucl. Fusion
58
(
1
),
016043
(
2018
).
68.
C.
Sommariva
,
E.
Nardon
,
P.
Beyer
,
M.
Hoelzl
,
G. T. A.
Huijsmans
, and
JET Contributors
. “
Electron acceleration in a JET disruption simulation
,”
Nucl. Fusion
58
(
10
),
106022
(
2018
).
69.
R. A.
Tinguely
,
V. A.
Izzo
,
D. T.
Garnier
,
A.
Sundström
,
K.
Särkimäki
,
O.
Embréus
,
T.
Fülöp
,
R. S.
Granetz
,
M.
Hoppe
,
I.
Pusztai
, and
R.
Sweeney
, “
Modeling the complete prevention of disruption-generated runaway electron beam formation with a passive 3D coil in SPARC
,”
Nucl. Fusion
61
(
12
),
124003
(
2021
).
70.
S. J.
Freethy
,
K. G.
McClements
,
S. C.
Chapman
,
R. O.
Dendy
,
W. N.
Lai
,
S. J. P.
Pamela
,
V. F.
Shevchenko
, and
R. G. L.
Vann
, “
Electron kinetics inferred from observations of microwave bursts during edge localized modes in the mega-amp spherical tokamak
,”
Phys. Rev. Lett.
114
(
12
),
125004
(
2015
).
71.
M.
Hoelzl
,
G.
Huijsmans
,
S.
Pamela
,
M.
Becoulet
,
E.
Nardon
,
F. J.
Artola
,
B.
Nkonga
,
C.
Atanasiu
,
V.
Bandaru
,
A.
Bhole
,
D.
Bonfiglio
,
A.
Cathey
,
O.
Czarny
,
A.
Dvornova
,
T.
Feher
,
A.
Fil
,
E.
Franck
,
S.
Futatani
,
M.
Gruca
,
H.
Guillard
,
J. W.
Haverkort
,
I.
Holod
,
D.
Hu
,
S.
Kim
,
S. Q.
Korving
,
L.
Kos
,
I.
Krebs
,
L.
Kripner
,
G.
Latu
,
F.
Liu
,
P.
Merkel
,
D.
Meshcheriakov
,
V.
Mitterauer
,
S.
Mochalskyy
,
J.
Morales
,
R.
Nies
,
N.
Nikulsin
,
F.
Orain
,
D.
Penko
,
J.
Pratt
,
R.
Ramasamy
,
P.
Ramet
,
C.
Reux
,
K.
Särkimäki
,
N.
Schwarz
,
P. S.
Verma
,
S. F.
Smith
,
C.
Sommariva
,
E.
Strumberger
,
D.
van Vugt
,
M.
Verbeek
,
E.
Westerhof
,
F.
Wieschollek
, and
J.
Zielinski
, “
The JOREK non-linear extended MHD code and applications to large-scale instabilities and their control in magnetically confined fusion plasmas
,”
Nucl. Fusion
61
,
065001
(
2021
).
72.
O.
Czarny
and
G.
Huysmans
, “
Bezier surfaces and finite elements for MHD simulations
,”
J. Comput. Phys.
227
(
16
),
7423
7445
(
2008
).
73.
E.
Franck
,
M.
Hoelzl
,
A.
Lessig
, and
E.
Sonnendrücker
, “
Energy conservation and numerical stability for the reduced MHD models of the non-linear JOREK code
,”
ESAIM: M2AN
49
(
5
),
1331
1365
(
2015
).
74.
O.
Sauter
,
C.
Angioni
, and
Y. R.
Lin-Liu
, “
Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime
,”
Phys. Plasmas
6
(
7
),
2834
2839
(
1999
).
75.
O.
Sauter
,
C.
Angioni
, and
Y. R.
Lin-Liu
, “
Erratum: ‘neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime,’ [Phys. Plasmas 6, 2834–5140 (1999)]
,”
Phys. Plasmas
9
(
12
),
5140
(
2002
).
76.
E.
Viezzer
,
T.
Pütterich
,
G. D.
Conway
,
R.
Dux
,
T.
Happel
,
J. C.
Fuchs
,
R. M.
McDermott
,
F.
Ryter
,
B.
Sieglin
,
W.
Suttrop
,
M.
Willensdorfer
, and
E.
Wolfrum
, “
High-accuracy characterization of the edge radial electric field at ASDEX upgrade
,”
Nucl. Fusion
53
(
5
),
053005
(
2013
).
77.
F.
Orain
,
M.
Bécoulet
,
G. T. A.
Huijsmans
,
G.
Dif-Pradalier
,
M.
Hoelzl
,
J.
Morales
,
X.
Garbet
,
E.
Nardon
,
S.
Pamela
,
C.
Passeron
,
G.
Latu
,
A.
Fil
, and
P.
Cahyna
, “
Resistive reduced MHD modeling of multi-edge-localized-mode cycles in tokamak X-point plasmas
,”
Phys. Rev. Lett.
114
,
035001
(
2015
).
78.
P. B.
Snyder
,
H. R.
Wilson
,
J. R.
Ferron
,
L. L.
Lao
,
A. W.
Leonard
,
T. H.
Osborne
,
A. D.
Turnbull
,
D.
Mossessian
,
M.
Murakami
, and
X. Q.
Xu
, “
Edge localized modes and the pedestal: A model based on coupled peeling–ballooning modes
,”
Phys. Plasmas
9
(
5
),
2037
2043
(
2002
).
79.
B. N.
Rogers
and
J. F.
Drake
, “
Diamagnetic stabilization of ideal ballooning modes in the edge pedestal
,”
Phys. Plasmas
6
(
7
),
2797
2801
(
1999
).
80.
R. J.
Hastie
,
P. J.
Catto
, and
J. J.
Ramos
, “
Effect of strong radial variation of the ion diamagnetic frequency on internal ballooning modes
,”
Phys. Plasmas
7
(
11
),
4561
4566
(
2000
).
81.
G. T. A.
Huysmans
,
S. E.
Sharapov
,
A. B.
Mikhailovskii
, and
W.
Kerner
, “
Modeling of diamagnetic stabilization of ideal magnetohydrodynamic instabilities associated with the transport barrier
,”
Phys. Plasmas
8
(
10
),
4292
4305
(
2001
).
82.
X.
Tao
,
A. A.
Chan
, and
A. J.
Brizard
, “
Hamiltonian theory of adiabatic motion of relativistic charged particles
,”
Phys. Plasmas
14
(
9
),
092107
(
2007
).
83.
K.
Särkimäki
,
F. J.
Artola
, and
M.
Hoelzl
, “
Confinement of passing and trapped runaway electrons in the simulation of an ITER current quench
,”
Nucl. Fusion
62
,
086033
(
2022
).
84.
K.
Falconer
,
Fractal Geometry: Mathematical Foundations and Applications
(
John Wiley & Sons
,
Chichester
,
1990
), ISBN: 0471922870.
85.
B. N.
Breizman
,
P.
Aleynikov
,
E. M.
Hollmann
, and
M.
Lehnen
, “
Physics of runaway electrons in tokamaks
,”
Nucl. Fusion
59
(
8
),
083001
(
2019
).
86.
M.
Ragwitz
and
H.
Kantz
, “
Indispensable finite time corrections for Fokker–Planck equations from time series data
,”
Phys. Rev. Lett.
87
(
25
),
254501
(
2001
).
87.
C.
Gardiner
,
Stochastic Methods: A Handbook for the Natural and Social Sciences
, 4th ed. (
Springer
,
Berlin & Heidelberg
,
2009
), ISBN: 978-3-540-70712-7.
88.
R.
Friedrich
,
C.
Renner
,
M.
Siefert
, and
J.
Peinke
, “
Comment on ‘Indispensable finite time corrections for Fokker–Planck equations from time series data
,’”
Phys. Rev. Lett.
89
(
14
),
149401
(
2002
).
89.
J. D.
Huba
, NRL Plasma Formulary,
2018
.
90.
G. T. A.
Huijsmans
and
A.
Loarte
, “
Non-linear MHD simulation of ELM energy deposition
,”
Nucl. Fusion
53
(
12
),
123023
(
2013
).
91.
H.
Isliker
,
T.
Pisokas
,
L.
Vlahos
, and
A.
Anastasiadis
, “
Particle acceleration and fractional transport in turbulent reconnection
,”
Astrophys. J.
849
(
1
),
35
(
2017
).
You do not currently have access to this content.