The quasi-longitudinal whistlers are recently reported in magnetized laboratory plasmas, i.e., at densities considerably higher than the space or magnetospheric plasmas. Given their oblique nature, these whistlers are known to be accompanied by density perturbations which undergo strong nonlinear steepening exclusively for their propagation close to resonant cone angle [Yoon et al., J. Geophys. Res. 119, 1851 (2014)]. This aspect is examined in the parameter regime of laboratory experiments where quasi-longitudinal whistler fluctuations are reported. A systematic study by a set of dedicated single mode numerical solution of the fully nonlinear model of quasi-longitudinally propagating whistlers is presented predominantly covering the high-density (low magnetic field) regime relevant to the laboratory whistler experiments. Following the recovery of existing computational results available for low-density cases, the computations in the newer regime are performed in the present study. The evolution recovered in both these regimes finds the sharp density structures or oscillations to be of resonant origin. While structures accompanying the whistlers' low-density resonant cone readily agree with the upper hybrid resonance frequency, the freshly covered high-density regime shows that the strong nonlinear nature of the whistler is capable of producing a modification in the resonant frequency, causing it to downshift from its linearly expected upper hybrid frequency.

1.
P. H.
Yoon
,
V. S.
Pandey
, and
D.-H.
Lee
,
J. Geophys. Res.
119
,
1851
, (
2014
).
2.
J.
Li
,
J.
Bortnik
,
X.
An
,
W.
Li
,
V.
Angelopoulos
,
R. M.
Thorne
,
C. T.
Russell
,
B.
Ni
,
X.
Shen
,
W. S.
Kurth
 et al,
Nat. Commun.
10
(
1
),
4672
(
2019
).
3.
J.
Li
,
J.
Bortnik
,
X.
An
,
W.
Li
,
R. M.
Thorne
,
M.
Zhou
,
W. S.
Kurth
,
G. B.
Hospodarsky
,
H. O.
Funsten
, and
H. E.
Spence
,
Geophys. Res. Lett.
44
,
11,713
11,721
(
2017
).
4.
W.
Li
,
O.
Santolik
,
J.
Bortnik
,
R.
Thorne
,
C.
Kletzing
,
W.
Kurth
, and
G.
Hospodarsky
,
Geophys. Res. Lett.
43
,
4725
, (
2016
).
5.
O. P.
Verkhoglyadova
,
B. T.
Tsurutani
, and
G. S.
Lakhina
,
J. Geophys. Res.
115
,
A00F19
(
2010
).
6.
X.
Fu
,
S. P.
Gary
,
G. D.
Reeves
,
D.
Winske
, and
J. R.
Woodroffe
,
Geophys. Res. Lett.
44
,
9532
, (
2017
).
7.
T.
Umeda
,
S.
Saito
, and
Y.
Nariyuki
,
Astrophys. J.
794
,
63
(
2014
).
8.
C. F.
Kennel
and
H.
Petschek
,
J. Geophys. Res.
71
,
1
28
(
1966
).
9.
F.
Mozer
,
O.
Agapitov
,
V.
Krasnoselskikh
,
S.
Lejosne
,
G.
Reeves
, and
I.
Roth
,
Phys. Rev. Lett.
113
,
035001
(
2014
).
10.
J.
Bortnik
,
R.
Thorne
, and
U. S.
Inan
,
Geophys. Res. Lett.
35
,
L21102
(
2008
).
11.
A. K.
Sanyasi
,
L. M.
Awasthi
,
P. K.
Srivastava
,
S. K.
Mattoo
,
D.
Sharma
,
R.
Singh
,
R.
Paikaray
, and
P.
Kaw
,
Phys. Plasmas
24
,
102118
(
2017
).
12.
B.
Van Compernolle
,
X.
An
,
J.
Bortnik
,
R. M.
Thorne
,
P.
Pribyl
, and
W.
Gekelman
,
Phys. Rev. Lett.
114
,
245002
(
2015
).
13.
D. A.
Spong
,
W.
Heidbrink
,
C.
Paz-Soldan
,
X.
Du
,
K.
Thome
,
M.
Van Zeeland
,
C.
Collins
,
A.
Lvovskiy
,
R.
Moyer
,
M.
Austin
 et al,
Phys. Rev. Lett.
120
,
155002
(
2018
).
14.
W. W.
Heidbrink
,
C.
Paz-Soldan
,
D. A.
Spong
,
X. D.
Du
,
K. E.
Thome
,
M. E.
Austin
,
A.
Lvovskiy
,
R. A.
Moyer
,
R. I.
Pinsker
, and
M. A. V.
Zeeland
,
Plasma Phys. Controlled Fusion
61
,
014007
(
2018
).
15.
T.
Fülöp
,
H.
Smith
, and
G.
Pokol
,
Phys. Plasmas
16
,
022502
(
2009
).
16.
E.
Kawamori
,
Phys. Rev. Lett.
110
,
095001
(
2013
).
17.
C.
Cattell
,
J. R.
Wygant
,
K.
Goetz
,
K.
Kersten
,
P. J.
Kellogg
,
T.
von Rosenvinge
,
S. D.
Bale
,
I.
Roth
,
M.
Temerin
,
M. K.
Hudson
,
R. A.
Mewaldt
,
M.
Wiedenbeck
,
M.
Maksimovic
,
R.
Ergun
,
M.
Acuna
, and
C. T.
Russell
,
Geophys. Res. Lett.
35
,
L01105
(
2008
).
18.
D. A.
Gurnett
and
L. A.
Frank
,
J. Geophys. Res.
77
,
172
, (
1972
).
19.
D.
Gurnett
,
W.
Kurth
,
J.
Steinberg
,
P.
Banks
,
R.
Bush
, and
W.
Raitt
,
Geophys. Res. Lett.
13
,
225
, (
1986
).
20.
P. H.
Yoon
,
Geophys. Res. Lett.
38
,
L12105
, (
2011
).
21.
K.
Dokgo
,
K.-W.
Min
,
C.-R.
Choi
,
M.
Woo
,
P. H.
Yoon
, and
K.-J.
Hwang
,
Phys. Plasmas
25
,
062904
(
2018
).
22.
J.
Bamber
,
W.
Gekelman
, and
J.
Maggs
,
Phys. Rev. Lett.
73
,
2990
(
1994
).
23.
O.
Agapitov
,
J.
Drake
,
I.
Vasko
,
F.
Mozer
,
A.
Artemyev
,
V.
Krasnoselskikh
,
V.
Angelopoulos
,
J.
Wygant
, and
G. D.
Reeves
,
Geophys. Res. Lett.
45
,
2168
, (
2018
).
24.
I. Y.
Vasko
,
O. V.
Agapitov
,
F. S.
Mozer
,
J. W.
Bonnell
,
A. V.
Artemyev
,
V. V.
Krasnoselskikh
, and
Y.
Tong
,
Phys. Rev. Lett.
120
,
195101
(
2018
).
25.
T. H.
Stix
,
Waves in Plasmas
(
Springer Science & Business Media
,
1992
). https://link.springer.com/book/9780883188590
26.
J. P.
Boris
,
A. M.
Landsberg
,
E. S.
Oran
, and
J. H.
Gardner
, “
LCPFCT-A flux-corrected transport algorithm for solving generalized continuity equations
,” NRL Memorandum Report 6410-93-7192,
Naval Research Laboratory
,
Washington DC
,
1993
.
27.
S. A.
Teukolsky
,
B. P.
Flannery
,
W. H.
Press
, and
W. T.
Vetterling
, “Numerical recipes in C,” SMR 693, No. 1 (
1992
), pp.
59
70
.
28.
N. A.
Krall
and
A. W.
Trivelpiece
,
Am. J. Phys.
41
,
1380
(
1973
).
29.
A.
Paul
and
D.
Sharma
, “Microscopic structure of electromagnetic whistler wave damping by kinetic mechanisms in hot magnetized Vlasov plasmas,”
Phys. Plasmas
(to be published).
30.
P. H.
Yoon
,
V. S.
Pandey
, and
D.-H.
Lee
,
Phys. Plasmas
20
,
112902
(
2013
).
You do not currently have access to this content.