Microbubble implosion (MBI) is a recently proposed novel mechanism with many interesting and exciting potential applications. MBI predicts that the inner layers of a spherical target with a hollow cavity can be compressed into a core with a density 105 times that of the solid density. Furthermore, this ultra-compressed core mostly consists of ions. This leads to the generation of ultra-high electric fields, which may be applicable to gamma-ray lensing or pair creation. However, MBI has yet to be studied for finite hollow spheres whose electrons are free to redistribute themselves after being given an initial temperature. This paper studies MBI under finite sphere conditions. Using an electron distribution model, the electron distribution after receiving an initial temperature is studied. Then, the optimal parameters required to fill a hollow cavity with electrons are calculated. The dynamics of MBI is simulated using a hybrid one-dimensional code. The simulation demonstrates that MBI occurs even for finite spheres, and high-density compression is still achievable with this setup. It also shows the optimal target structure, which maximizes ion flashing.

1.
J. W.
Yoon
,
Y. G.
Kim
,
I. W.
Choi
,
J. H.
Sung
,
H. W.
Lee
,
S. K.
Lee
, and
C. H.
Nam
, “
Realization of laser intensity over 1023 W/cm2
,”
Optica
8
,
630
(
2021
).
2.
Z.
Zhang
,
F.
Wu
,
J.
Hu
,
X.
Yang
,
J.
Gui
,
P.
Ji
,
X.
Liu
,
C.
Wang
,
Y.
Liu
,
X.
Lu
,
Y.
Xu
,
Y.
Leng
,
R.
Li
, and
Z.
Xu
, “
The laser beamline in SULF facility
,”
High Power Laser Sci. Eng.
8
,
e4
(
2020
).
3.
C. A.
Haynam
,
P. J.
Wegner
,
J. M.
Auerbach
,
M. W.
Bowers
,
S. N.
Dixit
,
G. V.
Erbert
,
G. M.
Heestand
,
M. A.
Henesian
,
M. R.
Hermann
,
K. S.
Jancaitis
,
K. R.
Manes
,
C. D.
Marshall
,
N. C.
Mehta
,
J.
Menapace
,
E.
Moses
,
J. R.
Murray
,
M. C.
Nostrand
,
C. D.
Orth
,
R.
Patterson
,
R. A.
Sacks
,
M. J.
Shaw
,
M.
Spaeth
,
S. B.
Sutton
,
W. H.
Williams
,
C. C.
Widmayer
,
R. K.
White
,
S. T.
Yang
, and
B. M. V.
Wonterghem
, “
National Ignition Facility laser performance status
,”
Appl. Opt.
46
,
3276
(
2007
).
4.
H.
Shiraga
,
S.
Fujioka
,
M.
Nakai
,
T.
Watari
,
H.
Nakamura
,
Y.
Arikawa
,
H.
Hosoda
,
T.
Nagai
,
M.
Koga
,
H.
Kikuchi
,
Y.
Ishii
,
T.
Sogo
,
K.
Shigemori
,
H.
Nishimura
,
Z.
Zhang
,
M.
Tanabe
,
S.
Ohira
,
Y.
Fujii
,
T.
Namimoto
,
Y.
Sakawa
,
O.
Maegawa
,
T.
Ozaki
,
K.
Tanaka
,
H.
Habara
,
T.
Iwawaki
,
K.
Shimada
,
H.
Nagatomo
,
T.
Johzaki
,
A.
Sunahara
,
M.
Murakami
,
H.
Sakagami
,
T.
Taguchi
,
T.
Norimatsu
,
H.
Homma
,
Y.
Fujimoto
,
A.
Iwamoto
,
N.
Miyanaga
,
J.
Kawanaka
,
T.
Jitsuno
,
Y.
Nakata
,
K.
Tsubakimoto
,
N.
Morio
,
T.
Kawasaki
,
K.
Sawai
,
K.
Tsuji
,
H.
Murakami
,
T.
Kanabe
,
K.
Kondo
,
N.
Sarukura
,
T.
Shimizu
,
K.
Mima
, and
H.
Azechi
, “
Fast ignition integrated experiments with Gekko and LFEX lasers
,”
Plasma Phys. Controlled Fusion
53
,
124029
(
2011
).
5.
L.
Torrisi
, “
Ion energy enhancement from TNSA plasmas obtained from advanced targets
,”
Laser Part. Beams
32
,
383
389
(
2014
).
6.
A.
Macchi
,
S.
Veghini
,
T. V.
Liseykina
, and
F.
Pegoraro
, “
Radiation pressure acceleration of ultrathin foils
,”
New J. Phys.
12
,
045013
(
2010
).
7.
A.
Henig
,
S.
Steinke
,
M.
Schnürer
,
T.
Sokollik
,
R.
Hörlein
,
D.
Kiefer
,
D.
Jung
,
J.
Schreiber
,
B. M.
Hegelich
,
X. Q.
Yan
,
J. M.
ter Vehn
,
T.
Tajima
,
P. V.
Nickles
,
W.
Sandner
, and
D.
Habs
, “
Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses
,”
Phys. Rev. Lett.
103
,
245003
(
2009
).
8.
S. S.
Bulanov
,
A.
Brantov
,
V. Y.
Bychenkov
,
V.
Chvykov
,
G.
Kalinchenko
,
T.
Matsuoka
,
P.
Rousseau
,
S.
Reed
,
V.
Yanovsky
,
D. W.
Litzenberg
,
K.
Krushelnick
, and
A.
Maksimchuk
, “
Accelerating monoenergetic protons from ultrathin foils by flat-top laser pulses in the directed-Coulomb-explosion regime
,”
Phys. Rev. E
78
,
026412
(
2008
).
9.
T. Z.
Esirkepov
,
Y.
Sentoku
,
K.
Mima
,
K.
Nishihara
,
F.
Califano
,
F.
Pegoraro
,
N. M.
Naumova
,
S. V.
Bulanov
,
Y.
Ueshima
,
T. V.
Liseikina
,
V. A.
Vshivkov
, and
Y.
Kato
, “
Ion acceleration by superintense laser pulses in plasmas
,”
J. Exp. Theor. Phys. Lett.
70
,
82
89
(
1999
).
10.
J.
Jortner
and
I.
Last
, “
Ultrafast nuclear dynamics and non-uniform Coulomb explosion of heteroclusters
,”
Mol. Phys.
103
,
1735
1743
(
2005
).
11.
I.
Last
and
J.
Jortner
, “
Ultrafast high-energy dynamics of thin spherical shells of light ions in the Coulomb explosion of heteroclusters
,”
Phys. Rev. A
71
,
063204
(
2005
).
12.
S. C.
Wilks
,
A. B.
Langdon
,
T. E.
Cowan
,
M.
Roth
,
M.
Singh
,
S.
Hatchett
,
M. H.
Key
,
D.
Pennington
,
A.
MacKinnon
, and
R. A.
Snavely
, “
Energetic proton generation in ultra-intense laser–solid interactions
,”
Phys. Plasmas
8
,
542
549
(
2001
).
13.
E.
Boella
,
B. P.
Paradisi
,
A.
D'Angola
,
L. O.
Silva
, and
G.
Coppa
, “
Study on Coulomb explosions of ion mixtures
,”
J. Plasma Phys.
82
,
905820110
(
2016
).
14.
W.
Lu
,
M.
Tzoufras
,
C.
Joshi
,
F. S.
Tsung
,
W. B.
Mori
,
J.
Vieira
,
R. A.
Fonseca
, and
L. O.
Silva
, “
Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime
,”
Phys. Rev. Spec. Top. Accel. Beams
10
,
061301
(
2007
).
15.
R.
Wagner
,
S.-Y.
Chen
,
A.
Maksimchuk
, and
D.
Umstadter
, “
Electron acceleration by a laser wakefield in a relativistically self-guided channel
,”
Phys. Rev. Lett.
78
,
3125
3128
(
1997
).
16.
A. V.
Arefiev
,
V. N.
Khudik
, and
M.
Schollmeier
, “
Enhancement of laser-driven electron acceleration in an ion channel
,”
Phys. Plasmas
21
,
033104
(
2014
).
17.
W.
Yu
,
V.
Bychenkov
,
Y.
Sentoku
,
M. Y.
Yu
,
Z. M.
Sheng
, and
K.
Mima
, “
Electron acceleration by a short relativistic laser pulse at the front of solid targets
,”
Phys. Rev. Lett.
85
,
570
573
(
2000
).
18.
A.
Buck
,
M.
Nicolai
,
K.
Schmid
,
C. M. S.
Sears
,
A.
Sävert
,
J. M.
Mikhailova
,
F.
Krausz
,
M. C.
Kaluza
, and
L.
Veisz
, “
Real-time observation of laser-driven electron acceleration
,”
Nat. Phys.
7
,
543
548
(
2011
).
19.
M.
Murakami
, “
Irradiation system based on dodecahedron for inertial confinement fusion
,”
Appl. Phys. Lett.
66
,
1587
1589
(
1995
).
20.
M.
Murakami
and
D.
Nishi
, “
Optimization of laser illumination configuration for directly driven inertial confinement fusion
,”
Matter Radiat. Extremes
2
,
55
68
(
2017
).
21.
R.
Betti
and
O. A.
Hurricane
, “
Inertial-confinement fusion with lasers
,”
Nat. Phys.
12
,
435
448
(
2016
).
22.
H.-S.
Park
,
O.
Hurricane
,
D.
Callahan
,
D.
Casey
,
E.
Dewald
,
T.
Dittrich
,
T.
Döppner
,
D.
Hinkel
,
L. B.
Hopkins
,
S. L.
Pape
,
T.
Ma
,
P.
Patel
,
B.
Remington
,
H.
Robey
,
J.
Salmonson
, and
J.
Kline
, “
High-adiabat high-foot inertial confinement fusion implosion experiments on the National Ignition Facility
,”
Phys. Rev. Lett.
112
,
055001
(
2014
).
23.
J. E.
Ralph
,
O.
Landen
,
L.
Divol
,
A.
Pak
,
T.
Ma
,
D. A.
Callahan
,
A. L.
Kritcher
,
T.
Döppner
,
D. E.
Hinkel
,
C.
Jarrott
,
J. D.
Moody
,
B. B.
Pollock
,
O.
Hurricane
, and
M. J.
Edwards
, “
The influence of hohlraum dynamics on implosion symmetry in indirect drive inertial confinement fusion experiments
,”
Phys. Plasmas
25
,
082701
(
2018
).
24.
D. L.
Burke
,
R. C.
Field
,
G.
Horton-Smith
,
J. E.
Spencer
,
D.
Walz
,
S. C.
Berridge
,
W. M.
Bugg
,
K.
Shmakov
,
A. W.
Weidemann
,
C.
Bula
,
K. T.
McDonald
,
E. J.
Prebys
,
C.
Bamber
,
S. J.
Boege
,
T.
Koffas
,
T.
Kotseroglou
,
A. C.
Melissinos
,
D. D.
Meyerhofer
,
D. A.
Reis
, and
W.
Ragg
, “
Positron production in multiphoton light-by-light scattering
,”
Phys. Rev. Lett.
79
,
1626
1629
(
1997
).
25.
A.
Titov
,
H.
Takabe
, and
B.
Kämpfer
, “
Nonlinear breit-wheeler process in short laser double pulses
,”
Phys. Rev. D
98
,
036022
(
2018
).
26.
K.
Krajewska
and
J. Z.
Kamiński
, “
Breit-Wheeler process in intense short laser pulses
,”
Phys. Rev. A
86
,
052104
(
2012
).
27.
M.
Vranic
,
O.
Klimo
,
G.
Korn
, and
S.
Weber
, “
Multi-GeV electron-positron beam generation from laser-electron scattering
,”
Sci. Rep.
8
,
4702
(
2018
).
28.
Y.-J.
Gu
,
O.
Klimo
,
S. V.
Bulanov
, and
S.
Weber
, “
Brilliant gamma-ray beam and electron–positron pair production by enhanced attosecond pulses
,”
Commun. Phys.
1
,
93
(
2018
).
29.
Y.-J.
Gu
and
S.
Weber
, “
Intense, directional and tunable γ-ray emission via relativistic oscillating plasma mirror
,”
Opt. Express
26
,
19932
(
2018
).
30.
Y.-J.
Gu
,
M.
Jirka
,
O.
Klimo
, and
S.
Weber
, “
Gamma photons and electron-positron pairs from ultra-intense laser-matter interaction: A comparative study of proposed configurations
,”
Matter Radiat. Extremes
4
,
064403
(
2019
).
31.
M.
Murakami
,
A.
Arefiev
, and
M. A.
Zosa
, “
Generation of ultrahigh field by micro-bubble implosion
,”
Sci. Rep.
8
,
7537
(
2018
).
32.
M.
Murakami
,
A.
Arefiev
,
M. A.
Zosa
,
J. K.
Koga
, and
Y.
Nakamiya
, “
Relativistic proton emission from ultrahigh-energy-density nanosphere generated by microbubble implosion
,”
Phys. Plasmas
26
,
043112
(
2019
).
33.
J. K.
Koga
,
M.
Murakami
,
A. V.
Arefiev
, and
Y.
Nakamiya
, “
Probing and possible application of the QED vacuum with micro-bubble implosions induced by ultra-intense laser pulses
,”
Matter Radiat. Extremes
4
,
034401
(
2019
).
34.
J. K.
Koga
,
M.
Murakami
,
A. V.
Arefiev
,
Y.
Nakamiya
,
S. S.
Bulanov
, and
S. V.
Bulanov
, “
Electron-positron pair creation in the electric fields generated by micro-bubble implosions
,”
Phys. Lett. A
384
,
126854
(
2020
).
35.
L.
Rayleigh
, “
VIII. On the pressure developed in a liquid during the collapse of a spherical cavity
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
34
,
94
98
(
1917
).
36.
B. P.
Barber
and
S. J.
Putterman
, “
Light scattering measurements of the repetitive supersonic implosion of a sonoluminescing bubble
,”
Phys. Rev. Lett.
69
,
3839
3842
(
1992
).
37.
F.
Peano
,
J. L.
Martins
,
R. A.
Fonseca
,
L. O.
Silva
,
G.
Coppa
,
F.
Peinetti
, and
R.
Mulas
, “
Dynamics and control of the expansion of finite-size plasmas produced in ultraintense laser-matter interactions
,”
Phys. Plasmas
14
,
056704
(
2007
).
38.
M.
Kanapathipillai
,
P.
Mulser
,
D. H. H.
Hoffmann
,
T.
Schlegel
,
Y.
Maron
, and
R.
Sauerbrey
, “
Net charge of a conducting microsphere embedded in a thermal plasma
,”
Phys. Plasmas
11
,
3911
3914
(
2004
).
39.
C.
Sack
and
H.
Schamel
, “
Plasma expansion into vacuum—A hydrodynamic approach
,”
Phys. Rep.
156
,
311
395
(
1987
).
40.
G.
Manfredi
,
S.
Mola
, and
M. R.
Feix
, “
Rescaling methods and plasma expansions into vacuum
,”
Phys. Fluids B
5
,
388
401
(
1993
).
41.
M. A. H.
Zosa
and
M.
Murakami
, “
Generation of quasi-monoenergetic ions using optimized hollow nanospheres
,”
Phys. Plasmas
27
,
033103
(
2020
).
42.
M.
Murakami
and
K.
Mima
, “
Efficient generation of quasimonoenergetic ions by Coulomb explosions of optimized nanostructured clusters
,”
Phys. Plasmas
16
,
103108
(
2009
).
43.
A.
D'Angola
,
E.
Boella
, and
G.
Coppa
, “
On the applicability of the standard kinetic theory to the study of nanoplasmas
,”
Phys. Plasmas
21
,
082116
(
2014
).
You do not currently have access to this content.