One limitation in high energy and high-efficiency electron acceleration by laser-driven plasma wakefield is the dephasing due to the accelerated electrons surpassing the acceleration phase of the wake. Here, by utilizing multi-stage plasma channels with different densities, we show in simulations that electrons can jump from a back acceleration bubble into a front one before getting into the deceleration phase and obtain relay acceleration in the front bubble when the laser steps into a new stage of the plasma channel. In our numerical studies, the final maximum energy of the electrons by such relay acceleration can be several times higher than electrons accelerated in a single-stage plasma channel. The defocusing effects on the beam emittance and charge, caused by electrons crossing the high-density electron layer located between the neighboring bubbles, can be suppressed by appropriately connecting the staged channels. The current scheme helps to increase the acceleration energy and efficiency of laser wakefield accelerators.

1.
T.
Tajima
and
J. M.
Dawson
, “
Laser electron accelerator
,”
Phys. Rev. Lett.
43
,
267
(
1979
).
2.
E.
Esarey
,
C. B.
Schroeder
, and
W. P.
Leemans
, “
Physics of laser-driven plasma-based electron accelerators
,”
Rev. Mod. Phys.
81
,
1229
(
2009
).
3.
M.
Chen
,
F.
Liu
,
B. Y.
Li
,
S. M.
Weng
,
L. M.
Chen
,
Z. M.
Sheng
, and
J.
Zhang
, “
Development and prospect of laser plasma wakefield accelerator
,”
High Power Laser Part. Beams
32
,
092001
(
2020
).
4.
A. R.
Maier
,
N. M.
Delbos
,
T.
Eichner
,
L.
Hübner
,
S.
Jalas
,
L.
Jeppe
,
S. W.
Jolly
,
M.
Kirchen
,
V.
Leroux
,
P.
Messner
,
M.
Schnepp
,
M.
Trunk
,
P. A.
Walker
,
C.
Werle
, and
P.
Winkler
, “
Decoding sources of energy variability in a laser-plasma accelerator
,”
Phys. Rev. X
10
,
031039
(
2020
).
5.
A. J.
Gonsalves
,
K.
Nakamura
,
J.
Daniels
,
C.
Benedetti
,
C.
Pieronek
,
T. C. H.
de Raadt
,
S.
Steinke
,
J. H.
Bin
,
S. S.
Bulanov
,
J.
van Tilborg
,
C. G. R.
Geddes
,
C. B.
Schroeder
,
C.
Tóth
,
E.
Esarey
,
K.
Swanson
,
L.
Fan-Chiang
,
G.
Bagdasarov
,
N.
Bobrova
,
V.
Gasilov
,
G.
Korn
,
P.
Sasorov
, and
W. P.
Leemans
, “
Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide
,”
Phys. Rev. Lett.
122
,
084801
(
2019
).
6.
B.
Miao
,
L.
Feder
,
J. E.
Shrock
,
A.
Goffin
, and
H. M.
Milchberg
, “
Optical guiding in meter-scale plasma waveguides
,”
Phys. Rev. Lett.
125
,
074801
(
2020
).
7.
S.
Steinke
,
J.
van Tilborg
,
C.
Benedetti
,
C. G. R.
Geddes
,
C. B.
Schroeder
,
J.
Daniels
,
K. K.
Swanson
,
A. J.
Gonsalves
,
K.
Nakamura
,
N. H.
Matlis
,
B. H.
Shaw
,
E.
Esarey
, and
W. P.
Leemans
, “
Multistage coupling of independent laser-plasma accelerators
,”
Nature
530
,
190
193
(
2016
).
8.
O.
Jakobsson
,
S. M.
Hooker
, and
R.
Walczak
, “
GeV-scale accelerators driven by plasma-modulated pulses from kilohertz lasers
,”
Phys. Rev. Lett.
127
,
184801
(
2021
).
9.
W.
Rittershofer
,
C. B.
Schroeder
,
E.
Esarey
,
F. J.
Gruner
, and
W. P.
Leemans
, “
Tapered plasma channels to phase-lock accelerating and focusing forces in laser-plasma accelerators
,”
Phys. Plasmas
17
,
063104
(
2010
);
W.
Li
,
J.
Liu
,
W.
Wang
,
Z.
Zhang
,
Q.
Chen
,
Y.
Tian
,
R.
Qi
,
C.
Yu
,
C.
Wang
,
T.
Tajima
,
R.
Li
, and
Z.
Xu
, “
The phase-lock dynamics of the laser wakefield acceleration with an intensity-decaying laser pulse
,”
Appl. Phys. Lett.
104
,
093510
(
2014
).
10.
S.
Smartsev
,
C.
Caizergues
,
K.
Oubrerie
,
J.
Gautier
,
J.-P.
Goddet
,
A.
Tafzi
,
K. T.
Phuoc
,
V.
Malka
, and
C.
Thaury
, “
Axiparabola: A long-focal-depth, high-resolution mirror for broadband high-intensity lasers
,”
Opt. Lett.
44
,
3414
3417
(
2019
).
11.
J. P.
Palastro
,
J. L.
Shaw
,
P.
Franke
,
D.
Ramsey
, and
D. H.
Froula
, “
Dephasingless laser wakefield acceleration
,”
Phys. Rev. Lett.
124
,
134802
(
2020
).
12.
J. D.
Sadler
,
C.
Arran
,
H.
Li
, and
K. A.
Flippo
, “
Overcoming the dephasing limit in multiple-pulse laser wakefield acceleration
,”
Phys. Rev. Accel. Beams
23
,
021303
(
2020
).
13.
C.
Caizergues
,
S.
Smartsev
,
V.
Malka
, and
C.
Thaury
, “
Phase-locked laser-wakefield electron acceleration
,”
Nat. Photonics
14
,
475
479
(
2020
).
14.
A.
Pukhov
and
I.
Kostyukov
, “
Control of laser-wakefield acceleration by the plasma-density profile
,”
Phys. Rev. E
77
,
025401
(
2008
).
15.
W. T.
Wang
,
W. T.
Li
,
J. S.
Liu
,
Z. J.
Zhang
,
R.
Qi
,
C. H.
Yu
,
J. Q.
Liu
,
M.
Fang
,
Z. Y.
Qin
,
C.
Wang
,
Y.
Xu
,
F. X.
Wu
,
Y. X.
Leng
,
R. X.
Li
, and
Z. Z.
Xu
, “
High-brightness high-energy electron beams from a laser wakefield accelerator via energy chirp control
,”
Phys. Rev. Lett.
117
,
124801
(
2016
).
16.
A. J.
Gonsalves
,
K.
Nakamura
,
C.
Lin
,
D.
Panasenko
,
S.
Shiraishi
,
T.
Sokollik
,
C.
Benedetti
,
C. B.
Schroeder
,
C. G. R.
Geddes
,
J.
van Tilborg
,
J.
Osterhoff
,
E.
Esarey
,
C.
Toth
, and
W. P.
Leemans
, “
Tunable laser plasma accelerator based on longitudinal density tailoring
,”
Nat. Phys.
7
,
862
866
(
2011
).
17.
C. G. R.
Geddes
,
K.
Nakamura
,
G. R.
Plateau
,
C.
Toth
,
E.
Cormier-Michel
,
E.
Esarey
,
C. B.
Schroeder
,
J. R.
Cary
, and
W. P.
Leemans
, “
Plasma-density-gradient injection of low absolute-momentum-spread electron bunches
,”
Phys. Rev. Lett.
100
,
215004
(
2008
).
18.
K.
Schmid
,
A.
Buck
,
C. M. S.
Sears
,
J. M.
Mikhailova
, and
L.
Veisz
, “
Density-transition based electron injector for laser driven wakefield accelerators
,”
Phys. Rev. Spec. Top.-Accel. Beams
13
,
091301
(
2010
).
19.
J.
Faure
,
C.
Rechatin
,
O.
Lundh
,
L.
Ammoura
, and
V.
Malka
, “
Injection and acceleration of quasimonoenergetic relativistic electron beams using density gradients at the edges of a plasma channel
,”
Phys. Plasmas
17
,
083107
(
2010
).
20.
T. Y.
Chien
,
C. L.
Chang
,
C. H.
Lee
,
J. Y.
Lin
,
J.
Wang
, and
S. Y.
Chen
, “
Spatially localized self-injection of electrons in a self-modulated laser-wakefield accelerator by using a laser-induced transient density ramp
,”
Phys. Rev. Lett.
94
,
115003
(
2005
).
21.
Z.
Zhang
,
W.
Li
,
J.
Liu
,
W.
Wang
,
C.
Yu
,
Y.
Tian
,
K.
Nakajima
,
A.
Deng
,
R.
Qi
,
C.
Wang
,
Z.
Qin
,
M.
Fang
,
J.
Liu
,
C.
Xia
,
R.
Li
, and
Z.
Xu
, “
Energy spread minimization in a cascaded laser wakefield accelerator via velocity bunching
,”
Phys. Plasmas
23
,
053106
(
2016
).
22.
S.
Gordienko
and
A.
Pukhov
, “
Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons
,”
Phys. Plasmas
12
,
043109
(
2005
).
23.
J.
Vieira
,
R.
Fonseca
,
L.
Silva
,
W.
Lu
,
M.
Tzoufras
,
C.
Joshi
,
F.
Tsung
, and
W.
Mori
, “
Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime
,”
Phys. Rev. Spec. Top.-Accel. Beams
10
,
061301
(
2007
).
24.
R. A.
Fonseca
,
L. O.
Silva
,
F. S.
Tsung
,
V. K.
Decyk
,
W.
Lu
,
C.
Ren
,
W. B.
Mori
,
S.
Deng
,
S.
Lee
,
T.
Katsouleas
, and
J. C.
Adam
, “
OSIRIS: A three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators
,” in
Proceedings of the Second International Conference on Computational Science—ICCS Amsterdam, The Netherlands, 21–24 April
(
Springer Berlin
,
Heidelberg
,
2002
), Vol. 2331, p.
342
.
25.
R.
Lehe
,
M.
Kirchen
,
I. A.
Andriyash
,
B. B.
Godfrey
, and
J.
LucVaya
, “
A spectral, quasi-cylindrical and dispersion-free Particle-In-Cell algorithm
,”
Comput. Phys. Commun.
203
,
66
82
(
2016
).
26.
J.
Luo
,
M.
Chen
,
G. B.
Zhang
,
T.
Yuan
,
J. Y.
Yu
,
Z. C.
Shen
,
L. L.
Yu
,
S. M.
Weng
,
C.
Schroeder
, and
E.
Esarey
, “
Dynamics of boundary layer electrons around a laser wakefield bubble
,”
Phys. Plasmas
23
,
103112
(
2016
).
27.
A. A.
Golovanov
and
I. Y.
Kostyukov
, “
Bubble regime of plasma wakefield in 2D and 3D geometries
,”
Phys. Plasmas
25
,
103107
(
2018
).
You do not currently have access to this content.