Radiation-driven heat fronts are present in the early universe during reionization, the circumstellar medium of supernovae, and in high-energy-density physics experiments. Dedicated experiments to observe and diagnose the behavior of these types of heat fronts can improve our understanding of these phenomena. A simulation study of photoionization fronts using the HELIOS-CR radiation hydrodynamics code provides an experimental design for the Z-Machine at Sandia National Laboratory using a measurement-calibrated input radiation flux to drive the photoionization front. The simulations use detailed atomic physics and non-diffusive radiation transport in 1D to determine an optimal gas pressure of 0.75 atm for an experiment in N gas as well as the effects of increasing the thickness of the window that seals the gas cell. Post-processing of these simulations demonstrates that ratios of atomic rate coefficients place the heat front in a physics regime where photoionization dominates the energy deposition. To see the sensitivity of the simulations to changes in the model and spatial grid, this analysis performed resolution, atomic model detail, and radiation transport angular grid studies showing less than 10% deviation from the nominal model for increased complexity, when possible. An effort to emulate 3D geometric effects on the radiation flux using an artificial attenuation scheme has shown that, even for conservative estimates of the flux, simulations still produce a photoionization front. Estimations of a streaked, visible spectroscopy measurement using SPECT3D showed that line emission measurements are present early in time and that later in time thermal emission should become dominant.

1.
R. A.
Chevalier
and
C. M.
Irwin
, “
X-rays from supernova shocks in dense mass loss
,”
Astrophys. J.
747
,
L17
(
2012
).
2.
S.
Hatchett
,
J.
Buff
, and
R.
McCray
, “
Transfer of x-rays through a spherically symmetric gas cloud
,”
Astrophys. J.
206
,
847
860
(
1976
).
3.
C. B.
Tarter
,
W. H.
Tucker
, and
E. E.
Salpeter
, “
The interaction of x-ray sources with optically thin environments
,”
Astrophys. J.
156
,
943
(
1969
).
4.
C. B.
Tarter
and
E. E.
Salpeter
, “
The interaction of x-ray sources with optically thick environments
,”
Astrophys. J.
156
,
953
(
1969
).
5.
C. S.
Kochanek
, “
The physics of flash (supernova) spectroscopy
,”
Mon. Not. R. Astron. Soc.
483
,
3762
3772
(
2018
).
6.
V.
Morozova
,
A. L.
Piro
, and
S.
Valenti
, “
Measuring the progenitor masses and dense circumstellar material of type II supernovae
,”
Astrophys. J.
858
,
15
(
2018
).
7.
M.
Fraser
, “
Supernovae and transients with circumstellar interaction
,”
R. Soc. Open Sci.
7
,
200467
(
2020
).
8.
O.
Yaron
,
D. A.
Perley
,
A.
Gal-Yam
,
J. H.
Groh
,
A.
Horesh
,
E. O.
Ofek
,
S. R.
Kulkarni
,
J.
Sollerman
,
C.
Fransson
,
A.
Rubin
,
P.
Szabo
,
N.
Sapir
,
F.
Taddia
,
S. B.
Cenko
,
S.
Valenti
,
I.
Arcavi
,
D. A.
Howell
,
M. M.
Kasliwal
,
P. M.
Vreeswijk
,
D.
Khazov
,
O. D.
Fox
,
Y.
Cao
,
O.
Gnat
,
P. L.
Kelly
,
P. E.
Nugent
,
A. V.
Filippenko
,
R. R.
Laher
,
P. R.
Wozniak
,
W. H.
Lee
,
U. D.
Rebbapragada
,
K.
Maguire
,
M.
Sullivan
, and
M. T.
Soumagnac
, “
Confined dense circumstellar material surrounding a regular type II supernova
,”
Nat. Phys.
13
,
510
517
(
2017
).
9.
G.
Leloudas
,
E. Y.
Hsiao
,
J.
Johansson
,
K.
Maeda
,
T. J.
Moriya
,
J.
Nordin
,
T.
Petrushevska
,
J. M.
Silverman
,
J.
Sollerman
,
M. D.
Stritzinger
,
F.
Taddia
, and
D.
Xu
, “
Supernova spectra below strong circumstellar interaction
,”
Astron. Astrophys.
574
,
A61
(
2015
).
10.
M.
Nicholl
,
P. K.
Blanchard
,
E.
Berger
,
R.
Chornock
,
R.
Margutti
,
S.
Gomez
,
R.
Lunnan
,
A. A.
Miller
,
W-f
Fong
,
G.
Terreran
,
A.
Vigna-Gómez
,
K.
Bhirombhakdi
,
A.
Bieryla
,
P.
Challis
,
R. R.
Laher
,
F. J.
Masci
, and
K.
Paterson
, “
An extremely energetic supernova from a very massive star in a dense medium
,”
Nat. Astron.
4
,
893
899
(
2020
).
11.
E.
Chatzopoulos
,
J. C.
Wheeler
,
J.
Vinko
,
R.
Quimby
,
E. L.
Robinson
,
A. A.
Miller
,
R. J.
Foley
,
D. A.
Perley
,
F.
Yuan
,
C.
Akerlof
, and
J. S.
Bloom
, “
SN 2008am: A super-luminous type IIn supernova
,”
Astrophys. J.
729
,
143
(
2011
).
12.
B. E.
Robertson
,
R. S.
Ellis
,
J. S.
Dunlop
,
R. J.
McLure
, and
D. P.
Stark
, “
Early star-forming galaxies and the reionization of the universe
,”
Nature
468
,
49
55
(
2010
).
13.
C. L.
Fryer
,
S. E.
Woosley
, and
A.
Heger
, “
Pair-instability supernovae, gravity waves, and gamma-ray transients
,”
Astrophys. J.
550
,
372
382
(
2001
).
14.
V.
Bromm
,
P. S.
Coppi
, and
R. B.
Larson
, “
The formation of the first stars. I: The primordial star-forming cloud
,”
Astrophys. J.
564
,
23
51
(
2002
).
15.
A. K.
Inoue
,
Y.
Tamura
,
H.
Matsuo
,
K.
Mawatari
,
I.
Shimizu
,
T.
Shibuya
,
K.
Ota
,
N.
Yoshida
,
E.
Zackrisson
,
N.
Kashikawa
,
K.
Kohno
,
H.
Umehata
,
B.
Hatsukade
,
M.
Iye
,
Y.
Matsuda
,
T.
Okamoto
, and
Y.
Yamaguchi
, “
Detection of an oxygen emission line from a high-redshift galaxy in the reionization epoch
,”
Science
352
,
1559
1562
(
2016
).
16.
K.
Mawatari
,
A. K.
Inoue
,
T.
Hashimoto
,
J.
Silverman
,
M.
Kajisawa
,
S.
Yamanaka
,
T.
Yamada
,
I.
Davidzon
,
P.
Capak
,
L.
Lin
,
B.-C.
Hsieh
,
Y.
Taniguchi
,
M.
Tanaka
,
Y.
Ono
,
Y.
Harikane
,
Y.
Sugahara
,
S.
Fujimoto
, and
T.
Nagao
, “
Balmer break galaxy candidates at z 6: A potential view on the star formation activity at z ≳ 14
,”
Astrophys. J.
889
,
137
(
2020
).
17.
D.
Schaerer
and
S.
de Barros
, “
On the physical properties of z -8 galaxies
,”
Astron. Astrophys.
515
,
A73
(
2010
).
18.
D.
Schaerer
and
S.
de Barros
, “
The impact of nebular emission on the ages of z6 galaxies
,”
Astron. Astrophys.
502
,
423
426
(
2009
).
19.
S.
de Barros
,
D.
Schaerer
, and
D. P.
Stark
, “
Properties of z 3-6 Lyman break galaxies—II. Impact of nebular emission at high redshift
,”
Astron. Astrophys.
563
,
A81
(
2014
).
20.
C. A.
Back
,
J. D.
Bauer
,
J. H.
Hammer
,
B. F.
Lasinski
,
R. E.
Turner
,
P. W.
Rambo
,
O. L.
Landen
,
L. J.
Suter
,
M. D.
Rosen
, and
W. W.
Hsing
, “
Diffusive, supersonic x-ray transport in radiatively heated foam cylinders
,”
Phys. Plasmas
7
,
2126
2134
(
2000
).
21.
C. A.
Back
,
J. D.
Bauer
,
O. L.
Landen
,
R. E.
Turner
,
B. F.
Lasinski
,
J. H.
Hammer
,
M. D.
Rosen
,
L. J.
Suter
, and
W. H.
Hsing
, “
Detailed measurements of a diffusive supersonic wave in a radiatively heated foam
,”
Phys. Rev. Lett.
84
,
274
277
(
2000
).
22.
D.
Hoarty
,
L.
Barringer
,
C.
Vickers
,
O.
Willi
, and
W.
Nazarov
, “
Observation of transonic ionization fronts in low-density foam targets
,”
Phys. Rev. Lett.
82
,
3070
3073
(
1999
).
23.
T.
Afshar-rad
,
M.
Desselberger
,
M.
Dunne
,
J.
Edwards
,
J. M.
Foster
,
D.
Hoarty
,
M. W.
Jones
,
S. J.
Rose
,
P. A.
Rosen
,
R.
Taylor
, and
O.
Willi
, “
Supersonic propagation of an ionization front in low density foam targets driven by thermal radiation
,”
Phys. Rev. Lett.
73
,
74
77
(
1994
).
24.
P.
Keiter
,
M.
Gunderson
,
J.
Foster
,
P.
Rosen
,
A.
Comley
,
M.
Taylor
, and
T.
Perry
, “
Radiation transport in inhomogeneous media
,”
Phys. Plasmas
15
,
056901
(
2008
).
25.
P. A.
Keiter
,
G. A.
Kyrala
,
R. G.
Watt
,
G. C.
Idzorek
,
R. R.
Peterson
,
B.
Wood
,
P.
Adams
,
R. E.
Chrien
,
D.
Peterson
, and
M.
Wood-Schultz
, “
Preliminary results from an astrophysically relevant radiation transfer experiment
,” in
High Energy Density Laboratory Astrophysics
, edited by
G.
Kyrala
(
Springer
,
Dordrecht
,
Netherlands
,
2005
), pp.
163
170
.
26.
J. M.
Taccetti
,
P. A.
Keiter
,
N.
Lanier
,
K.
Mussack
,
K.
Belle
, and
G. R.
Magelssen
, “
A technique for measuring the propagation of a supersonic radiation front in foam via spatially resolved spectral imaging of a tracer layer
,”
Rev. Sci. Instrum.
83
,
023506
(
2012
).
27.
A. B.
Reighard
,
R. P.
Drake
,
K. K.
Dannenberg
,
D. J.
Kremer
,
M.
Grosskopf
,
E. C.
Harding
,
D. R.
Leibrandt
,
S. G.
Glendinning
,
T. S.
Perry
,
B. A.
Remington
,
J.
Greenough
,
J.
Knauer
,
T.
Boehly
,
S.
Bouquet
,
L.
Boireau
,
M.
Koenig
, and
T.
Vinci
, “
Observation of collapsing radiative shocks in laboratory experiments
,”
Phys. Plasmas
13
,
082901
(
2006
).
28.
M.
Koenig
,
T.
Vinci
,
A.
Benuzzi-Mounaix
,
S.
Lepape
,
N.
Ozaki
,
S.
Bouquet
,
L.
Boireau
,
S.
Leygnac
,
C.
Michaut
,
C.
Stehle
,
J. P.
Chièze
,
D.
Batani
,
T.
Hall
,
K.
Tanaka
, and
M.
Yoshida
, “
Radiative shock experiments at LULI
,”
Astrophys. Space Sci.
298
,
69
74
(
2005
).
29.
J. E.
Cross
,
G.
Gregori
,
J. M.
Foster
,
P.
Graham
,
J. M.
Bonnet-Bidaud
,
C.
Busschaert
,
N.
Charpentier
,
C. N.
Danson
,
H. W.
Doyle
,
R. P.
Drake
,
J.
Fyrth
,
E. T.
Gumbrell
,
M.
Koenig
,
C.
Krauland
,
C. C.
Kuranz
,
B.
Loupias
,
C.
Michaut
,
M.
Mouchet
,
S.
Patankar
,
J.
Skidmore
,
C.
Spindloe
,
E. R.
Tubman
,
N.
Woolsey
,
R.
Yurchak
, and
É.
Falize
, “
Laboratory analogue of a supersonic accretion column in a binary star system
,”
Nat. Commun.
7
,
ncomms11899
(
2016
).
30.
C. C.
Kuranz
,
H. S.
Park
,
C. M.
Huntington
,
A. R.
Miles
,
B. A.
Remington
,
T.
Plewa
,
M. R.
Trantham
,
H. F.
Robey
,
D.
Shvarts
,
A.
Shimony
,
K.
Raman
,
S.
MacLaren
,
W. C.
Wan
,
F. W.
Doss
,
J.
Kline
,
K. A.
Flippo
,
G.
Malamud
,
T. A.
Handy
,
S.
Prisbrey
,
C. M.
Krauland
,
S. R.
Klein
,
E. C.
Harding
,
R.
Wallace
,
M. J.
Grosskopf
,
D. C.
Marion
,
D.
Kalantar
,
E.
Giraldez
, and
R. P.
Drake
, “
How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants
,”
Nat. Commun.
9
,
1564
(
2018
).
31.
G. A.
Rochau
,
J. E.
Bailey
,
R. E.
Falcon
,
G. P.
Loisel
,
T.
Nagayama
,
R. C.
Mancini
,
I.
Hall
,
D. E.
Winget
,
M. H.
Montgomery
, and
D. A.
Liedahl
, “
Zapp: The z astrophysical plasma properties collaboration
,”
Phys. Plasmas
21
,
056308
(
2014
).
32.
S.
Fujioka
,
H.
Takabe
,
N.
Yamamoto
,
D.
Salzmann
,
F.
Wang
,
H.
Nishimura
,
Y.
Li
,
Q.
Dong
,
S.
Wang
,
Y.
Zhang
,
Y.-J.
Rhee
,
Y.-W.
Lee
,
J.-M.
Han
,
M.
Tanabe
,
T.
Fujiwara
,
Y.
Nakabayashi
,
G.
Zhao
,
J.
Zhang
, and
K.
Mima
, “
X-ray astronomy in the laboratory with a miniature compact object produced by laser-driven implosion
,”
Nat. Phys.
5
,
821
825
(
2009
).
33.
R. P.
Drake
,
G.
Hazak
,
P. A.
Keiter
,
J. S.
Davis
,
C. R.
Patterson
,
A.
Frank
,
E. G.
Blackman
, and
M.
Busquet
, “
Design of laboratory experiments to study photoionization fronts driven by thermal sources
,”
Astrophys. J.
833
,
249
(
2016
).
34.
W. J.
Gray
,
P. A.
Keiter
,
H.
Lefevre
,
C. R.
Patterson
,
J. S.
Davis
,
B.
van Der Holst
,
K. G.
Powell
, and
R. P.
Drake
, “
Laboratory photoionization fronts in nitrogen gas: A numerical feasibility and parameter study
,”
Astrophys. J.
858
,
22
(
2018
).
35.
W. J.
Gray
,
P. A.
Keiter
,
H.
Lefevre
,
C. R.
Patterson
,
J. S.
Davis
,
K. G.
Powell
,
C. C.
Kuranz
, and
R. P.
Drake
, “
Atomic modeling of photoionization fronts in nitrogen gas
,”
Phys. Plasmas
26
,
052901
(
2019
).
36.
J. S.
Davis
,
Y.
Frank
,
E.
Raicher
,
M.
Fraenkel
,
P. A.
Keiter
,
S. R.
Klein
,
R. P.
Drake
, and
D.
Shvarts
, “
Measurements of laser generated soft x-ray emission from irradiated gold foils
,”
Rev. Sci. Instrum.
87
,
11D609
(
2016
).
37.
J. S.
Davis
,
R. P.
Drake
,
M.
Fraenkel
,
Y.
Frank
,
P. A.
Keiter
,
S. R.
Klein
,
E.
Raicher
,
D.
Shvarts
, and
M. R.
Trantham
, “
Soft x-ray emission from laser-irradiated gold foils
,”
Phys. Plasmas
25
,
073304
(
2018
).
38.
T. W. L.
Sanford
,
R. W.
Lemke
,
R. C.
Mock
,
G. A.
Chandler
,
R. J.
Leeper
,
C. L.
Ruiz
,
D. L.
Peterson
,
R. E.
Chrien
,
G. C.
Idzorek
,
R. G.
Watt
, and
J. P.
Chittenden
, “
Dynamics and characteristics of a 215-ev dynamic-hohlraum x-ray source on z
,”
Phys. Plasmas
9
,
3573
3594
(
2002
).
39.
G. A.
Rochau
,
J. E.
Bailey
,
Y.
Maron
,
G. A.
Chandler
,
G. S.
Dunham
,
D. V.
Fisher
,
V. I.
Fisher
,
R. W.
Lemke
,
J. J.
MacFarlane
,
K. J.
Peterson
,
D. G.
Schroen
,
S. A.
Slutz
, and
E.
Stambulchik
, “
Radiating shock measurements in the z-pinch dynamic hohlraum
,”
Phys. Rev. Lett.
100
,
125004
(
2008
).
40.
R. C.
Mancini
,
J. E.
Bailey
,
J. F.
Hawley
,
T.
Kallman
,
M.
Witthoeft
,
S. J.
Rose
, and
H.
Takabe
, “
Accretion disk dynamics, photoionized plasmas, and stellar opacities
,”
Phys. Plasmas
16
,
041001
(
2009
).
41.
G. P.
Loisel
,
J. E.
Bailey
,
D. A.
Liedahl
,
C. J.
Fontes
,
T. R.
Kallman
,
T.
Nagayama
,
S. B.
Hansen
,
G. A.
Rochau
,
R. C.
Mancini
, and
R. W.
Lee
, “
Benchmark experiment for photoionized plasma emission from accretion-powered x-ray sources
,”
Phys. Rev. Lett.
119
,
075001
(
2017
).
42.
R. C.
Mancini
,
T. E.
Lockard
,
D. C.
Mayes
,
I. M.
Hall
,
G. P.
Loisel
,
J. E.
Bailey
,
G. A.
Rochau
,
J.
Abdallah
,
I. E.
Golovkin
, and
D.
Liedahl
, “
X-ray heating and electron temperature of laboratory photoionized plasmas
,”
Phys. Rev. E
101
,
051201
(
2020
).
43.
B.
Strömgren
, “
The physical state of interstellar hydrogen
,”
Astrophys. J.
89
,
526
(
1939
).
44.
F. A.
Goldsworthy
, “
On the propagation and structure of ionization fronts
,”
Rev. Mod. Phys.
30
,
1062
1068
(
1958
).
45.
F. A.
Goldsworthy
, “
Ionization fronts in interstellar gas and the expansion of HII regions
,”
Philos. Trans. R. Soc. London Ser. A
253
,
277
300
(
1961
).
46.
F. D.
Kahn
, “
The acceleration of interstellar clouds
,”
Bull. Astron. Inst. Neth.
12
,
187
(
1954
).
47.
W. I.
Axford
, “
Ionization fronts in interstellar gas: The structure of ionization fronts
,”
Philos. Trans. R. Soc. London Ser. A
253
,
301
333
(
1961
).
48.
W.
Lotz
, “
Electron-impact ionization cross-sections and ionization rate coefficients for atoms and ions
,”
Astrophys. J.
14
,
207
(
1967
).
49.
D.
Salzmann
,
Atomic Physics in Hot Plasmas
, International Series of Monographs on Physics (
Oxford University Press
,
1998
).
50.
D. A.
Verner
and
G. J.
Ferland
, “
Atomic data for astrophysics. I: Radiative recombination rates for H-like, He-like, Li-like, and Na-like ions over a broad range of temperature
,”
Astrophys. J.
103
,
467
(
1996
); arXiv:Astro-ph/9509083 [astro-ph].
51.
D. A.
Liedahl
, “
X-ray photoionized plasmas in space and in the laboratory
,”
Astrophys. Space Sci.
336
,
251
256
(
2011
).
52.
R. P.
Drake
, “
How to see a black hole
,”
Nat. Phys.
5
,
786
787
(
2009
).
53.
J.
MacFarlane
,
I.
Golovkin
, and
P.
Woodruff
, “
Helios-CR—A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling
,”
J. Quant. Spectrosc. Radiat. Transfer
99
,
381
397
(
2006
).
54.
G. L.
Olson
and
P.
Kunasz
, “
Short characteristic solution of the non-LTE line transfer problem by operator perturbation—I: The one-dimensional planar slab
,”
J. Quant. Spectrosc. Radiat. Transfer
38
,
325
336
(
1987
).
55.
R. M.
More
,
K. H.
Warren
,
D. A.
Young
, and
G. B.
Zimmerman
, “
A new quotidian equation of state (QEOS) for hot dense matter
,”
Phys. Fluids
31
,
3059
3078
(
1988
).
56.
D. A.
Verner
,
G. J.
Ferland
,
K. T.
Korista
, and
D. G.
Yakovlev
, “
Atomic data for astrophysics. II: New analytic FITS for photoionization cross sections of atoms and ions
,”
Astrophys. J.
465
,
487
(
1996
); arXiv:Astro-ph/9601009 [astro-ph].
57.
D. A.
Verner
and
D. G.
Yakovlev
, “
Analytic FITS for partial photoionization cross sections
,”
Astron. Astrophys.
109
,
125
133
(
1995
).
58.
V.
Jacobs
, “
Autoionization phenomena in plasma radiation processes
,”
J. Quant. Spectrosc. Radiat. Transfer
54
,
195
205
(
1995
).
59.
J.
Abdallah
and
E. H.
Clark
, “
Comparison of explicit and effective models for calculating ionic populations in argon plasmas
,”
J. Phys. B
27
,
3589
3602
(
1994
).
60.
G. J.
Ferland
, “
The ionization balance of a non-equilibrium plasma—Commentary on: Arnaud M. and Rothenflug R., 1985, A&As, 60, 425
,”
Astron. Astrophys.
500
,
299
300
(
2009
).
61.
J.
MacFarlane
,
I.
Golovkin
,
P.
Wang
,
P.
Woodruff
, and
N.
Pereyra
, “
Spect3d—A multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and pic simulation output
,”
High Energy Density Phys.
3
,
181
190
(
2007
).
You do not currently have access to this content.