The effects of a finite guide field on the distribution of plasmoids in high-Lundquist-number current sheets undergoing magnetic reconnection in large plasmas are investigated with statistical models. Merging of plasmoids is taken into account either assuming that guide field flux is conserved resulting in nonforce-free profiles in general, or that magnetic helicity is conserved and Taylor relaxation occurs to convert part of the summed guide field flux into reconnecting field flux toward minimum energy states resulting in force-free profiles. It is found that the plasmoid distribution in terms of reconnecting field flux follows a power law with index 7/4 or 1 depending on whether merger frequencies are independent of or dependent on their relative velocity to the outflow speed, respectively. This result is approximately the same for the force-free and nonforce-free models, with nonforce-free models exhibiting indices of 2 and 1 for the same velocity dependencies. Distributions in terms of guide field flux yield indices of 3/2 for the nonforce-free model regardless of velocity dependence. This is notably distinct from the indices of 11/8 and 1 for the force-free models independent of and dependent on velocity, respectively. At low guide field fluxes, the force-free models exhibit a second power law index of 1/2 due to nonconstant flux growth rates. The velocity-dependent force-free model predicts the production of slightly more rapidly moving large guide field flux plasmoids which are supported by observational evidence of flux ropes with strong core fields. Implications are discussed on particle acceleration via Fermi processes.

1.
M.
Yamada
,
R.
Kulsrud
, and
H.
Ji
, “
Magnetic reconnection
,”
Rev. Mod. Phys.
82
,
603
(
2010
).
2.
H.
Ji
and
W.
Daughton
, “
Phase diagram for magnetic reconnection in heliophysical, astrophysical, and laboratory plasmas
,”
Phys. Plasmas
18
,
111207
(
2011
).
3.
J.
Lin
,
S. R.
Cranmer
, and
C. J.
Farrugia
, “
Plasmoids in reconnecting current sheets: Solar and terrestrial contexts compared
,”
J. Geophys. Res.
113
,
A11107
, (
2008
).
4.
E. G.
Zweibel
and
M.
Yamada
, “
Magnetic reconnection in astrophysical and laboratory plasmas
,”
Annu. Rev. Astron. Astrophys.
47
,
291
332
(
2009
).
5.
J.
Birn
,
J.
Drake
,
M.
Shay
,
B.
Rogers
,
R.
Denton
,
M.
Hesse
,
M.
Kuznetsova
,
Z.
Ma
,
A.
Bhattacharjee
,
A.
Otto
, and
P.
Pritchett
, “
Geomagnetic environmental modeling (GEM) magnetic reconnection challenge
,”
J. Geophys. Res.
106
,
3715
, (
2001
).
6.
K.
Shibata
and
S.
Tanuma
, “
Plasmoid-induced-reconnection and fractal reconnection
,”
Earth, Planets Space
53
,
473
482
(
2001
).
7.
N. F.
Loureiro
,
A. A.
Schekochihin
, and
S. C.
Cowley
, “
Instability of current sheets and formation of plasmoid chains
,”
Phys. Plasmas
14
,
100703
(
2007
).
8.
A.
Bhattacharjee
,
Y.-M.
Huang
,
H.
Yang
, and
B.
Rogers
, “
Fast reconnection in high-Lundquist-number plasmas due to the plasmoid instability
,”
Phys. Plasmas
16
,
112102
(
2009
).
9.
L.
Comisso
,
M.
Lingam
,
Y.-M.
Huang
, and
A.
Bhattacharjee
, “
Plasmoid instability in forming current sheets
,”
Astrophys. J.
850
,
142
(
2017
).
10.
L.
Comisso
,
M.
Lingam
,
Y.-M.
Huang
, and
A.
Bhattacharjee
, “
General theory of the plasmoid instability
,”
Phys. Plasmas
23
,
100702
(
2016
).
11.
A.
Lazarian
and
E. T.
Vishniac
, “
Reconnection in a weakly stochastic field
,”
Astrophys. J.
517
,
700
(
1999
).
12.
J. F.
Drake
,
M.
Swisdak
,
H.
Che
, and
M. A.
Shay
, “
Electron acceleration from contracting magnetic islands during reconnection
,”
Nature
443
,
553
556
(
2006
).
13.
L.
Sironi
and
A.
Spitkovsky
, “
Relativistic reconnection: An efficient source of non-thermal particles
,”
Astrophys. J.
783
,
L21
(
2014
).
14.
K.
Nalewajko
,
D. A.
Uzdensky
,
C.
Benoit
,
G. R.
Werner
, and
M. C.
Begelman
, “
On the distribution of particle acceleration sites in plasmoid-dominated relativistic magnetic reconnection
,”
Astrophys. J.
815
,
101
(
2015
).
15.
M.
Hoshino
, “
Stochastic particle acceleration in multiple magnetic islands during reconnection
,”
Phys. Rev. Lett.
108
,
135003
(
2012
).
16.
M.
Hoshino
and
Y.
Lyubarsky
, “
Relativistic reconnection and particle acceleration
,”
Space Sci. Rev.
173
,
521
533
(
2012
).
17.
Y.-M.
Huang
and
A.
Bhattacharjee
, “
Scaling laws of resistive magnetohydrodynamic reconnection in the high-Lundquist-number, plasmoid-unstable regime
,”
Phys. Plasmas
17
,
062104
(
2010
).
18.
N. F.
Loureiro
,
R.
Samtaney
,
A. A.
Schekochihin
, and
D. A.
Uzdensky
, “
Magnetic reconnection and stochastic plasmoid chains in high-Lundquist-number plasmas
,”
Phys. Plasmas
19
,
042303
(
2012
).
19.
R. L.
Fermo
,
J. F.
Drake
, and
M.
Swisdak
, “
A statistical model of magnetic islands in a current layer
,”
Phys. Plasmas
17
,
10702
(
2010
).
20.
R. L.
Fermo
,
J. F.
Drake
,
M.
Swisdak
, and
K.-J.
Hwang
, “
Comparison of a statistical model for magnetic islands in large current layers with Hall MHD simulations and cluster FTE observations
,”
J. Geophys. Res.
116
,
A09226
, (
2011
).
21.
K.
Bergstedt
,
H.
Ji
,
J.
Jara-Almonte
,
J.
Yoo
,
R. E.
Ergun
, and
L. J.
Chen
, “
Statistical properties of magnetic structures and energy dissipation during turbulent reconnection in the Earth's magnetotail
,” e-prints arXiv:2005.01226 (
2020
).
22.
L.-J.
Guo
,
A.
Bhattacharjee
, and
Y.-M.
Huang
, “
Distribution of plasmoids in post-coronal mass ejection current sheets
,”
Astrophys. J. Lett.
771
,
L14
(
2013
).
23.
S.
Dorfman
,
H.
Ji
,
M.
Yamada
,
J.
Yoo
,
E.
Lawrence
,
C.
Myers
, and
T. D.
Tharp
, “
Experimental observation of 3D, impulsive reconnection events in a laboratory plasma
,”
Phys. Plasmas
21
,
012109
(
2014
).
24.
J.
Olson
,
J.
Egedal
,
S.
Greess
,
R.
Myers
,
M.
Clark
,
D.
Endrizzi
,
K.
Flanagan
,
J.
Milhone
,
E.
Peterson
,
J.
Wallace
,
D.
Weisberg
, and
C. B.
Forest
, “
Experimental demonstration of the collisionless plasmoid instability below the ion kinetic scale during magnetic reconnection
,”
Phys. Rev. Lett.
116
,
255001
(
2016
).
25.
M.
Lingam
and
L.
Comisso
, “
A maximum entropy principle for inferring the distribution of 3D plasmoids
,”
Phys. Plasmas
25
,
012114
(
2018
).
26.
D. A.
Uzdensky
,
N. F.
Loureiro
, and
A.
Schekochihin
, “
Fast magnetic reconnection in the plasmoid-dominated regime
,”
Phys. Rev. Lett.
105
,
235002
(
2010
).
27.
Y.-M.
Huang
and
A.
Bhattacharjee
, “
Distribution of plasmoids in high-Lundquist-number magnetic reconnection
,”
Phys. Rev. Lett.
109
,
265002
(
2012
).
28.
M.
Takamoto
, “
Evolution of relativistic plasmoid chains in a poynting-dominated plasma
,”
Astrophys. J.
775
,
50
(
2013
).
29.
C.
Shen
,
J.
Lin
,
N. A.
Murphy
, and
J. C.
Raymond
, “
Statistical and spectral properties of magnetic islands in reconnecting current sheets during two-ribbon flares
,”
Phys. Plasmas
20
,
072114
(
2013
).
30.
L.
Ni
,
J.
Lin
, and
N. A.
Murphy
, “
Effects of the non-uniform initial environment and the guide field on the plasmoid instability
,”
Phys. Plasmas
20
,
061206
(
2013
).
31.
J. B.
Taylor
, “
Relaxation and magnetic reconnection in laboratory plasmas
,”
Rev. Mod. Phys.
58
,
741
(
1986
).
32.
M. B.
Moldwin
and
W. J.
Hughes
, “
Plasmoids as magnetic flux ropes
,”
J. Geophys. Res.
96
,
14051
14064
, (
1991
).
33.
J. A.
Slavin
,
C. J.
Owen
,
M. M.
Kuznetsova
, and
M.
Hesse
, “
ISEE 3 observations of plasmoids with flux rope magnectic topologies
,”
Geophys. Res. Lett.
22
,
2061
2064
, (
1995
).
34.
J. A.
Slavin
,
R. P.
Lepping
,
J.
Gjerloev
,
D. H.
Fairfield
,
M.
Hesse
,
C. J.
Owen
,
M. B.
Moldwin
,
T.
Nagai
,
A.
Ieda
, and
T.
Mukai
, “
Geotail observations of magnetic flux ropes in the plasma sheet
,”
J. Geophys. Res.
108
,
1015
, (
2003
).
35.
J. B.
Taylor
, “
Relaxation of toroidal plasma and generation of reverse magnetic fields
,”
Phys. Rev. Lett.
33
,
1139
1141
(
1974
).
36.
H.
Ji
,
S. C.
Prager
, and
J. S.
Sarff
, “
Conservation of magnetic helicity during plasma relaxation
,”
Phys. Rev. Lett.
74
,
2945
2948
(
1995
).
37.
S.
Chandrasekhar
and
P. C.
Kendall
, “
On force-free magnetic fields
,”
Astrophys. J.
126
,
457
(
1957
).
38.
H.
Ji
, “
Helicity, reconnection, and dynamo effects
,”
Geophys. Monograph Ser.
111
,
167
177
(
1999
).
39.
M.
Zhou
,
N. F.
Loureiro
, and
D. A.
Uzdensky
, “
Multi-scale dynamics of magnetic flux tubes and inverse magnetic energy transfer
,”
J. Plasma Phys.
86
,
535860401
(
2020
).
40.
D.
Voslamber
and
D. K.
Callebaut
, “
Stability of force-free magnetic fields
,”
Phys. Rev.
128
,
2016
2021
(
1962
).
41.
M. A.
Berger
and
G. B.
Field
, “
The topological properties of magnetic helicity
,”
J. Fluid Mech.
147
,
133
148
(
1984
).
42.
J. M.
Finn
and
T. M.
Antonsen
, “
Magnetic helicity: What is it and what is it good for
,”
Comments Plasma Phys. Controlled Fusion
9
,
111
126
(
1985
).
43.
A.
Janos
,
G.
Hart
, and
M.
Yamada
, “
Relaxation of spheromak plasmas toward a minimum-energy state through global magnetic fluctuations
,”
Phys. Rev. Lett.
55
,
2868
(
1985
).
44.
F.
Pucci
and
M.
Velli
, “
Reconnection of quasi-singular current sheets: The ‘ideal’ tearing mode
,”
Astrophys. J.
780
,
L19
(
2013
).
45.
Y.-M.
Huang
,
L.
Comisso
, and
A.
Bhattacharjee
, “
Plasmoid instability in evolving current sheets and onset of fast reconnection
,”
Astrophys. J.
849
,
75
(
2017
).
46.
W. H.
Press
and
W. T.
Vetterling
,
Numerical Recipes
(
Cambridge University Press
,
1999
).
47.
W. J.
Sun
,
J. A.
Slavin
,
A. M.
Tian
,
S. C.
Bai
,
G. K.
Poh
,
M.
Akhavan-Tafti
,
S.
Lu
,
S. T.
Yao
,
G.
Le
,
R.
Nakamura
 et al., “
MMS' study of the structure of ion-scale flux ropes in the earths cross-tail current sheet
,”
Geophys. Res. Lett.
46
,
6168
6177
, (
2019
).
48.
D.
Telloni
,
V.
Carbone
,
S.
Perri
,
D.
Bruno
,
F.
Lepetri
, and
P.
Veltri
, “
Relaxation processes within solar wind flux ropes in solar wind
,”
Astrophys. J.
826
,
205
(
2016
).
49.
D.
Craig
,
D.
Martin
,
D. J. D.
Hartog
,
M. D.
Nornberg
, and
J. A.
Reusch
, “
Magnetic and velocity fluctuations from nonlinearly coupled tearing modes in the reversed field pinch with and without the reversal surface
,”
Phys. Plasmas
24
,
082308
(
2017
).
50.
H.
Hakobyan
,
M.
Petropoulou
,
A.
Spitkovsky
, and
L.
Sironi
, “
Secondary energization in compressing plasmoids during magnetic reconnection
,” e-prints arXiv:2006.12530 (
2020
).
51.
D. A.
Knoll
and
L.
Chacón
, “
Coalescence of magnetic islands, sloshing, and the pressure problem
,”
Phys. Plasmas
13
,
032307
(
2006
).
You do not currently have access to this content.