We develop a first-principles scaling theory of the spreading of three-dimensional (3D) magnetic reconnection of finite extent in the out of plane direction. This theory addresses systems with or without an out of plane (guide) magnetic field, and with or without Hall physics. The theory reproduces known spreading speeds and directions with and without guide fields, unifying previous knowledge in a single theory. New results include the following: (1) reconnection spreads in a particular direction if an x-line is induced at the interface between reconnecting and non-reconnecting regions, which is controlled by the out of plane gradient of the electric field in the outflow direction. (2) The spreading mechanism for anti-parallel collisionless reconnection is convection, as is known, but for guide field reconnection it is magnetic field bending. We confirm the theory using 3D two-fluid and resistive-magnetohydrodynamics simulations. (3) The theory explains why anti-parallel reconnection in resistive-magnetohydrodynamics does not spread. (4) The simulation domain aspect ratio, associated with the free magnetic energy, influences whether reconnection spreads or convects with a fixed x-line length. (5) We perform a simulation initiating anti-parallel collisionless reconnection with a pressure pulse instead of a magnetic perturbation, finding spreading is unchanged rather than spreading at the magnetosonic speed as previously suggested. The results provide a theoretical framework for understanding spreading beyond systems studied here and are important for applications including two-ribbon solar flares and reconnection in Earth's magnetosphere.

1.
J. W.
Dungey
, “
Conditions for the occurrence of electrical discharges in astrophysical systems
,”
Philos. Mag.
44
,
725
(
1953
).
2.
V. M.
Vasyliunas
, “
Theoretical models of magnetic field line merging, 1
,”
Rev. Geophys.
13
,
303
, (
1975
).
3.
E.
Priest
and
T.
Forbes
,
Magnetic Reconnection
(
Cambridge University Press
,
2000
).
4.
R. L.
McPherron
,
C. T.
Russell
, and
M. P.
Aubry
, “
Phenomenological model for substorms
,”
J. Geophys. Res.
78
,
3131
, (
1973
).
5.
D. A.
Uzdensky
,
Magnetic Reconnection in Extreme Astrophysical Environments
(
University of Colorado
,
2011
), Vol.
160
, pp.
45
71
.
6.
D. A.
Uzdensky
, “
Radiative magnetic reconnection in astrophysics
,” in
Magnetic Reconnection: Concepts and Applications
, Astrophysics and Space Science Library, edited by
W.
Gonzalez
and
E.
Parker
(
Springer International Publishing
,
Cham
,
2016
), pp.
473
519
.
7.
P. A.
Sweet
, “
The neutral point theory of solar flares
,” in
Electromagnetic Phenomena in Cosmical Physics
, edited by
B.
Lehnert
(
Cambridge University Press
,
New York
,
1958
) p.
123
.
8.
E. N.
Parker
, “
Sweet's mechanism for merging magnetic fields in conducting fluids
,”
J. Geophys. Res.
62
,
509
, (
1957
).
9.
H. E.
Petschek
, “
Magnetic field annihilation
,” in
Proceedings of the AAS-NASA Symposium. The Physics of Solar Flares
(
National Aeronautics and Space Administration, Science and Technical Information Division
,
1964
), Vol.
50
, pp.
425
439
.
10.
D. I.
Pontin
, “
Three-dimensional magnetic reconnection regimes: A review
,”
Adv. Space Res.
47
,
1508
(
2011
).
11.
V. S.
Lukin
and
M. G.
Linton
, “
Three-dimensional magnetic reconnection through a moving magnetic null
,”
Nonlinear Processes Geophys.
18
,
871
(
2011
).
12.
E.
Priest
,
Magnetohydrodynamics of the Sun
(
Cambridge University Press
,
New York
,
2014
).
13.
M. A.
Shay
,
J. F.
Drake
,
M.
Swisdak
,
W.
Dorland
, and
B. N.
Rogers
, “
Inherently three-dimensional magnetic reconnection: A mechanism for bursty bulk flows?
,”
Geophys. Res. Lett.
30
,
1345
, (
2003
).
14.
M. G.
Linton
and
D. W.
Longcope
, “
A model for patchy reconnection in three dimensions
,”
Astrophys. J.
642
,
1177
(
2006
).
15.
J. C.
Meyer
 III
, “
Structure of the diffusion region in three dimensional magnetic reconnection
,” Ph.D. thesis (
University of Delaware
,
2013
).
16.
Y. L.
Sasunov
,
V. S.
Semenov
,
M. F.
Heyn
,
N. V.
Erkaev
,
I. V.
Kubyshkin
,
K. Y.
Slivka
,
D. B.
Korovinskiy
, and
M. L.
Khodachenko
, “
A statistical survey of reconnection exhausts in the solar wind based on the Riemannian decay of current sheets
,”
J. Geophys. Res.
120
,
8194
8209
, (
2015
).
17.
L. S.
Shepherd
,
P. A.
Cassak
,
J. F.
Drake
,
J. T.
Gosling
,
T.-D.
Phan
, and
M. A.
Shay
, “
Structure of exhausts in magnetic reconnection with an x-line of finite extent
,”
Astrophys. J.
848
,
90
(
2017
).
18.
Y.-H.
Liu
,
T. C.
Li
,
M.
Hesse
,
W. J.
Sun
,
J.
Liu
,
J.
Burch
,
J. A.
Slavin
, and
K.
Huang
, “
Three-dimensional magnetic reconnection with a spatially confined x-Line extent: Implications for dipolarizing flux bundles and the dawn-dusk asymmetry
,”
J. Geophys. Res.
124
,
2819
2830
, (
2019
).
19.
K.
Huang
,
Y.-H.
Liu
,
Q.
Lu
, and
M.
Hesse
, “
Scaling of magnetic reconnection with a limited x-line extent
,”
Geophys. Res. Lett.
47
,
e2020GL088147
, (
2020
).
20.
H.
Isobe
,
T.
Yokoyama
,
M.
Shimojo
,
T.
Morimoto
,
H.
Kozu
,
S.
Eto
,
N.
Narukage
, and
K.
Shibata
, “
Reconnection rate in the decay phase of a long duration event flare on 1997 May 12
,”
Astrophys. J.
566
,
528
(
2002
).
21.
J.
Lee
and
D. E.
Gary
, “
Parallel motions of coronal hard x-ray source and Ha ribbons
,”
Astrophys. J.
685
,
L87
(
2008
).
22.
J.
Qiu
, “
Observational analysis of magnetic reconnection sequence
,”
Astrophys. J.
692
,
1110
(
2009
).
23.
J.
Qiu
,
W.
Liu
,
N.
Hill
, and
M.
Kazachenko
, “
Reconnection and energetics in two-ribbon flares: A revisit of the Bastille Day flare
,”
Astrophys. J.
725
,
319
(
2010
).
24.
C.
Liu
,
J.
Lee
,
J.
Jing
,
R.
Liu
,
N.
Deng
, and
H.
Wang
, “
Motions of hard x-ray sources during an asymmetric eruption
,”
Astrophys. J. Lett.
721
,
L193
L198
(
2010
).
25.
J. X.
Cheng
,
G.
Kerr
, and
J.
Qiu
, “
Hard x-ray and ultraviolet observations of the 2005 January 15 two-ribbon flare
,”
Astrophys. J.
744
,
48
(
2011
).
26.
H.
Tian
,
P. R.
Young
,
K. K.
Reeves
,
B.
Chen
,
W.
Liu
, and
S.
McKillop
, “
Temporal evolution of chromospheric evaporation: Case studies of the M1.1 flare on 2014 September 6 and X1.6 flare on 2014 September 10
,”
Astrophys. J.
811
,
139
(
2015
).
27.
D. R.
Graham
and
G.
Cauzzi
, “
Temporal evolution of multiple evaporating ribbon sources in a solar flare
,”
Astrophys. J.
807
,
L22
(
2015
).
28.
J.
Qiu
,
D. W.
Longcope
,
P. A.
Cassak
, and
E. R.
Priest
, “
Elongation of flare ribbons
,”
Astrophys. J.
838
,
17
(
2017
).
29.
D.
Tripathi
,
H.
Isobe
, and
H. E.
Mason
, “
On the propagation of brightening after filament/prominence eruptions, as seen by SoHO-EIT
,”
Astron. Astrophys.
453
,
1111
(
2006
).
30.
M.
Zhou
,
M.
Ashour-Abdalla
,
X.
Deng
,
Y.
Pang
,
H.
Fu
,
R.
Walker
,
G.
Lapenta
,
S.
Huang
,
X.
Xu
, and
R.
Tang
, “
Observation of three-dimensional magnetic reconnection in the terrestrial magnetotail
,”
J. Geophys. Res.
122
,
9513
9520
, (
2017
).
31.
Y.
Zou
,
B. M.
Walsh
,
Y.
Nishimura
,
V.
Angelopoulos
,
J. M.
Ruohoniemi
,
K. A.
McWilliams
, and
N.
Nishitani
, “
Spreading speed of magnetopause reconnection X-lines using ground-satellite coordination
,”
Geophys. Res. Lett.
45
,
80
89
, (
2018
).
32.
Y.
Zou
,
B. M.
Walsh
,
Y.
Nishimura
,
V.
Angelopoulos
,
J. M.
Ruohoniemi
,
K. A.
McWilliams
, and
N.
Nishitani
, “
Local time extent of magnetopause reconnection using space–ground coordination
,”
Ann. Geophys.
37
,
215
234
(
2019
).
33.
T.
Nagai
, “
Observed magnetic substorm signatures at synchronous altitude
,”
J. Geophys. Res.
87
,
4405
, (
1982
).
34.
T.
Nagai
,
I.
Shinohara
,
S.
Zenitani
,
R.
Nakamura
,
T. K. M.
Nakamura
,
M.
Fujimoto
,
Y.
Saito
, and
T.
Mukai
, “
Three-dimensional structure of magnetic reconnection in the magnetotail from geotail observations
,”
J. Geophys. Res.
118
,
1667
1678
, (
2013
).
35.
H.
Hietala
,
J. P.
Eastwood
, and
A.
Isavnin
, “
Sequentially released tilted flux ropes in the earth's magnetotail
,”
Plasma Phys. Controlled Fusion
56
,
064011
(
2014
).
36.
N.
Katz
,
J.
Egedal
,
W.
Fox
,
A.
Le
,
J.
Bonde
, and
A.
Vrublevskis
, “
Laboratory observation of localized onset of magnetic reconnection
,”
Phys. Rev. Lett.
104
,
255004
(
2010
).
37.
J.
Egedal
,
N.
Katz
,
J.
Bonde
,
W.
Fox
,
A.
Le
,
M.
Porkolab
, and
A.
Vrublevskis
, “
Spontaneous onset of magnetic reconnection in toroidal plasma caused by breaking of 2D symmetry
,”
Phys. Plasmas
18
,
111203
(
2011
).
38.
S.
Dorfman
,
H.
Ji
,
M.
Yamada
,
J.
Yoo
,
E.
Lawrence
,
C.
Myers
, and
T. D.
Tharp
, “
Three-dimensional, impulsive magnetic reconnection in a laboratory plasma
,”
Geophys. Res. Lett.
40
,
1
, (
2013
).
39.
S.
Dorfman
,
H.
Ji
,
M.
Yamada
,
J.
Yoo
,
E.
Lawrence
,
C.
Myers
, and
T. D.
Tharp
, “
Experimental observation of 3D, impulsive reconnection events in a laboratory plasma
,”
Phys. Plasmas
21
,
012109
(
2014
).
40.
T. D.
Phan
,
J. T.
Gosling
,
M. S.
Davis
,
R. M.
Skoug
,
M.
Oieroset
,
R. P.
Lin
,
R. P.
Lepping
,
D. J.
McComas
,
C. W.
Smith
,
H.
Reme
, and
A.
Balogh
, “
A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind
,”
Nature
439
,
175
(
2006
).
41.
J. T.
Gosling
,
S.
Eriksson
,
L. M.
Blush
,
T. D.
Phan
,
J. G.
Luhmann
,
D. J.
McComas
,
R. M.
Skoug
,
M. H.
Acuna
,
C. T.
Russell
, and
K. D.
Simunac
, “
Five spacecraft observations of oppositely directed exhaust jets from a magnetic reconnection X-line extending >4.26 ×106 km in the solar wind at 1 AU
,”
Geophys. Res. Lett.
34
,
L20108
, (
2007
).
42.
J. D.
Huba
and
L. I.
Rudakov
, “
Three-dimensional Hall magnetic reconnection
,”
Phys. Plasmas
9
,
4435
(
2002
).
43.
J. D.
Huba
and
L. I.
Rudakov
, “
Hall magnetohydrodynamics of neutral layers
,”
Phys. Plasmas
10
,
3139
(
2003
).
44.
H.
Karimabadi
,
D.
Krauss-Varban
,
J. D.
Huba
, and
H. X.
Vu
, “
On magnetic reconnection regimes and associated three-dimensional asymmetries: Hybrid, Hall-less hybrid, and Hall-MHD simulations
,”
J. Geophys. Res.
109
,
A09205
, (
2004
).
45.
G.
Lapenta
,
D.
Krauss-Varban
,
H.
Karimabadi
,
J. D.
Huba
,
L. I.
Rudakov
, and
P.
Ricci
, “
Kinetic simulations of x-line expansion in 3D reconnection
,”
Geophys. Res. Lett.
33
,
L10102
, (
2006
).
46.
L. S.
Shepherd
and
P. A.
Cassak
, “
Guide field dependence of 3D X-line spreading during collisionless magnetic reconnection
,”
J. Geophys. Res.
117
,
A10101
, (
2012
).
47.
T. K. M.
Nakamura
,
R.
Nakamura
,
A.
Alexandrova
,
Y.
Kubota
, and
T.
Nagai
, “
Hall magnetohydrodynamic effects for three-dimensional magnetic reconnection with finite width along the direction of the current
,”
J. Geophys. Res.
117
,
03220
, (
2012
).
48.
N.
Jain
,
J.
Büchner
,
S.
Dorfman
,
H.
Ji
, and
A. S.
Sharma
, “
Current disruption and its spreading in collisionless magnetic reconnection
,”
Phys. Plasmas
20
,
112101
(
2013
).
49.
M.
Hesse
,
M.
Kuznetsova
, and
J.
Birn
, “
Particle-in-cell simulations of three-dimensional collisionless magnetic reconnection
,”
J. Geophys. Res.
106
,
29831
29841
, (
2001
).
50.
T.
Li
,
Y.-H.
Liu
,
M.
Hesse
, and
Y.
Zou
, “
Three-dimensional x-line spreading in asymmetric magnetic reconnection
,”
J. Geophys. Res.
125
,
e2019JA027094
, (
2020
).
51.
J. T.
Gosling
,
R. M.
Skoug
,
D. J.
McComas
, and
C. W.
Smith
, “
Direct evidence for magnetic reconnection in the solar wind near 1 AU
,”
J. Geophys. Res.
110
,
A01107
, (
2005
).
52.
N.
Jain
and
J.
Büchner
, “
Spreading of electron scale magnetic reconnection with a wave number dependent speed due to the propagation of dispersive waves
,”
Phys. Plasmas
24
,
082304
(
2017
).
53.
R.
Schreier
,
M.
Swisdak
,
J. F.
Drake
, and
P. A.
Cassak
, “
Three-dimensional simulations of the orientation and structure of reconnection X-lines
,”
Phys. Plasmas
17
,
110704
(
2010
).
54.
J. A.
Vorpahl
, “
The triggering and subsequent development of a solar flare
,”
Astrophys. J.
205
,
868
(
1976
).
55.
M. A.
Shay
,
J. F.
Drake
,
M.
Swisdak
, and
B. N.
Rogers
, “
The scaling of embedded collisionless reconnection
,”
Phys. Plasmas
11
,
2199
(
2004
).
56.
P. N.
Guzdar
,
J. F.
Drake
,
D.
McCarthy
,
A. B.
Hassam
, and
C. S.
Liu
, “
Three-dimensional fluid simulations of the nonlinear drift-resistive ballooning modes in tokamak edge plasmas
,”
Phys. Fluids B
5
,
3712
3727
(
1993
).
57.
M. A.
Shay
,
J. F.
Drake
,
B. N.
Rogers
, and
R. E.
Denton
, “
The scaling of collisionless, magnetic reconnection for large systems
,”
Geophys. Res. Lett.
26
,
2163
2166
, (
1999
).
58.
J.
Birn
,
J. F.
Drake
,
M. A.
Shay
,
B. N.
Rogers
,
R. E.
Denton
,
M.
Hesse
,
M.
Kuznetsova
,
Z. W.
Ma
,
A.
Bhattacharjee
,
A.
Otto
, and
P. L.
Pritchett
, “
GEM magnetic reconnection challenge
,”
J. Geophys. Res.
106
,
3715
, (
2001
).
59.
Y.-H.
Liu
,
M.
Hesse
,
F.
Guo
,
W.
Daughton
,
H.
Li
,
P. A.
Cassak
, and
M. A.
Shay
, “
Why does steady-state magnetic reconnection have a maximum local rate of order 0.1?
,”
Phys. Rev. Lett.
118
,
085101
(
2017
).
60.
M.
Ugai
and
T.
Tsuda
, “
Magnetic field line reconnexion by localized enhancement of resistivity, 1, evolution in a compressible MHD fluid
,”
J. Plasma Phys.
17
,
337
(
1977
).
61.
T.
Sato
and
T.
Hayashi
, “
Externally driven magnetic reconnection and a powerful magnetic energy converter
,”
Phys. Fluids
22
,
1189
(
1979
).
62.
P. S.
Pyakurel
,
M. A.
Shay
,
J. F.
Drake
,
T. D.
Phan
,
P. A.
Cassak
, and
J. L.
Verniero
, “
A faster form of electron magnetic reconnection with a finite length X-line
,”
Phys. Rev. Lett.
(Submitted).
You do not currently have access to this content.