This work presents an analytical investigation of anomalous diffusion and turbulence in a dusty plasma monolayer, where energy transport across scales leads to the spontaneous formation of spatially disordered patterns. Many-body simulations of 10 000-particle dusty plasma monolayers are used to demonstrate how the global dynamics depend on the statistical properties of the dust assembly for realistic laboratory conditions. We find that disorder due to variations in the dust size distribution and charge-driven nonlocal interactions resulting in anomalous dust diffusion are key factors for the onset of instabilities. The resulting dynamics exhibit features of inertial turbulence over slightly more than half a decade of scales proportional or smaller than the Debye shielding length. These processes are examined analytically using a recently developed Fractional Laplacian Spectral technique, which identifies the active energy channels as a function of scale, disorder concentration, and features of the nonlocal interactions. The predictions from the theoretical (spectral) analysis demonstrate agreement with the results from the many-body (kinetic) simulations, thus providing a powerful tool for the study of active turbulence.

1.
J.
Lu
and
R. A.
Shaw
, “
Charged particle dynamics in turbulence: Theory and direct numerical simulations
,”
Phys. Fluids
27
(
6
),
065111
(
2015
).
2.
J. K.
Eaton
and
J. R.
Fessler
, “
Preferential concentration of particles by turbulence
,”
Int. J. Multiphase Flow
20
,
169
209
(
1994
).
3.
J. R.
Fessler
,
J. D.
Kulick
, and
J. K.
Eaton
, “
Preferential concentration of heavy particles in a turbulent channel flow
,”
Phys. Fluids
6
(
11
),
3742
3749
(
1994
).
4.
G. E.
Thomas
and
J.
Olivero
, “
Noctilucent clouds as possible indicators of global change in the mesosphere
,”
Adv. Space Res.
28
(
7
),
937
946
(
2001
).
5.
K. V.
Beard
,
H. T.
Ochs
, and
C. H.
Twohy
, “
Aircraft measurements of high average charges on cloud drops in layer clouds
,”
Geophys. Res. Lett.
31
(
14
),
L14111
, (
2004
).
6.
L.
Zhou
and
B. A.
Tinsley
, “
Production of space charge at the boundaries of layer clouds
,”
J. Geophys. Res.
112
(
D11
),
D11203
, (
2007
).
7.
G.
Hendrickson
, “
Electrostatics and gas phase fluidized bed polymerization reactor wall sheeting
,”
Chem. Eng. Sci.
61
(
4
),
1041
1064
(
2006
).
8.
R. G.
Rokkam
,
A.
Sowinski
,
R. O.
Fox
,
P.
Mehrani
, and
M. E.
Muhle
, “
Computational and experimental study of electrostatics in gas–solid polymerization fluidized beds
,”
Chem. Eng. Sci.
92
,
146
156
(
2013
).
9.
R. G.
Rokkam
,
R. O.
Fox
, and
M. E.
Muhle
, “
Computational fluid dynamics and electrostatic modeling of polymerization fluidized-bed reactors
,”
Powder Technol.
203
(
2
),
109
124
(
2010
).
10.
J. S.
Shrimpton
and
A. J.
Yule
, “
Characterisation of charged hydrocarbon sprays for application in combustion systems
,”
Exp. Fluids
26
(
5
),
460
469
(
1999
).
11.
F.
Esposito
,
R.
Molinaro
,
C. I.
Popa
,
C.
Molfese
,
F.
Cozzolino
,
L.
Marty
,
K.
Taj‐Eddine
,
G. D.
Achille
,
G.
Franzese
,
S.
Silvestro
, and
G. G.
Ori
, “
The role of the atmospheric electric field in the dust-lifting process
,”
Geophys. Res. Lett.
43
(
10
),
5501
5508
, (
2016
).
12.
J. F.
Kok
and
N. O.
Renno
, “
The effects of electric forces on dust lifting: Preliminary studies with a numerical model
,”
J. Phys.: Conf. Ser.
142
(
1
),
012047
(
2008
).
13.
A. V.
Malm
and
T. A.
Waigh
, “
Elastic turbulence in entangled semi-dilute DNA solutions measured with optical coherence tomography velocimetry
,”
Sci. Rep.
7
(
1
),
1186
(
2017
).
14.
J.
Mitchell
,
K.
Lyons
,
A. M.
Howe
, and
A.
Clarke
, “
Viscoelastic polymer flows and elastic turbulence in three-dimensional porous structures
,”
Soft Matter
12
(
2
),
460
468
(
2015
).
15.
A.
Groisman
and
V.
Steinberg
, “
Elastic turbulence in a polymer solution flow
,”
Nature
405
(
6782
),
53
55
(
2000
).
16.
A.
Groisman
and
V.
Steinberg
, “
Elastic turbulence in curvilinear flows of polymer solutions
,”
New J. Phys.
6
(
1
),
29
(
2004
).
17.
S.
Bu
,
J.
Yang
,
Q.
Dong
, and
Q.
Wang
, “
Experimental study of flow transitions in structured packed beds of spheres with electrochemical technique
,”
Exp. Therm. Fluid Sci.
60
,
106
114
(
2015
).
18.
N. A.
Horton
and
D.
Pokrajac
, “
Onset of turbulence in a regular porous medium: An experimental study
,”
Phys. Fluids
21
(
4
),
045104
(
2009
).
19.
J. W.
Fox
, “
Onset of turbulent flow in certain arrays of particles
,”
Proc. Phys. Soc., Sect. B
62
(
12
),
829
(
1949
).
20.
J. C. M.
Lin
and
L. L.
Pauley
, “
Low-Reynolds-number separation on an airfoil
,”
AIAA J.
34
(
8
),
1570
1577
(
1996
).
21.
M. S.
Selig
and
J. J.
Guglielmo
, “
High-lift low Reynolds number airfoil design
,”
J. Aircr.
34
(
1
),
72
79
(
1997
).
22.
W.
Shyy
,
Y.
Lian
,
J.
Tang
,
D.
Viieru
, and
H.
Liu
,
Aerodynamics of Low Reynolds Number Flyers
(
Cambridge University Press
,
2007
).
23.
Z.
Jane Wang
, “
Two dimensional mechanism for insect hovering
,”
Phys. Rev. Lett.
85
(
10
),
2216
2219
(
2000
).
24.
C. P.
Ellington
, “
The novel aerodynamics of insect flight: Applications to micro-air vehicles
,”
J. Exp. Biol.
202
(
23
),
3439
3448
(
1999
).
25.
R.
Golestanian
and
A.
Ajdari
, “
Stochastic low Reynolds number swimmers
,”
J. Phys.: Condens. Matter
21
(
20
),
204104
(
2009
).
26.
A.
Najafi
and
R.
Golestanian
, “
Coherent hydrodynamic coupling for stochastic swimmers
,”
Europhys. Lett.
90
(
6
),
68003
(
2010
).
27.
J. H.
Chu
and
L.
I
, “
Direct observation of Coulomb crystals and liquids in strongly coupled rf dusty plasmas
,”
Phys. Rev. Lett.
72
(
25
),
4009
4012
(
1994
).
28.
H.
Thomas
,
G. E.
Morfill
,
V.
Demmel
,
J.
Goree
,
B.
Feuerbacher
, and
D.
Möhlmann
, “
Plasma crystal: Coulomb crystallization in a dusty plasma
,”
Phys. Rev. Lett.
73
(
5
),
652
655
(
1994
).
29.
A. P.
Nefedov
,
O. F.
Petrov
,
V. I.
Molotkov
, and
V. E.
Fortov
, “
Formation of liquidlike and crystalline structures in dusty plasmas
,”
J. Exp. Theor. Phys. Lett.
72
(
4
),
218
226
(
2000
).
30.
P.
Hartmann
,
A.
Douglass
,
J. C.
Reyes
,
L. S.
Matthews
,
T. W.
Hyde
,
A.
Kovács
, and
Z.
Donkó
, “
Crystallization dynamics of a single layer complex plasma
,”
Phys. Rev. Lett.
105
,
115004
(
2010
).
31.
M.
Schwabe
,
S.
Zhdanov
,
C.
Räth
,
D. B.
Graves
,
H. M.
Thomas
, and
G. E.
Morfill
, “
Collective effects in vortex movements in complex plasmas
,”
Phys. Rev. Lett.
112
(
11
),
115002
(
2014
).
32.
G. E.
Morfill
,
M.
Rubin-Zuzic
,
H.
Rothermel
,
A. V.
Ivlev
,
B. A.
Klumov
,
H. M.
Thomas
,
U.
Konopka
, and
V.
Steinberg
, “
Highly resolved fluid flows: ‘Liquid plasmas’ at the kinetic level
,”
Phys. Rev. Lett.
92
(
17
),
175004
(
2004
).
33.
M.
Rubin-Zuzic
,
H. M.
Thomas
,
S. K.
Zhdanov
, and
G. E.
Morfill
, “
Circulation' dynamo in complex plasma
,”
New J. Phys.
9
(
2
),
39
(
2007
).
34.
M.
Klindworth
,
A.
Melzer
,
A.
Piel
, and
V. A.
Schweigert
, “
Laser-excited intershell rotation of finite Coulomb clusters in a dusty plasma
,”
Phys. Rev. B
61
(
12
),
8404
8410
(
2000
).
35.
G.
Uchida
,
S.
Iizuka
,
T.
Kamimura
, and
N.
Sato
, “
Generation of two-dimensional dust vortex flows in a direct current discharge plasma
,”
Phys. Plasmas
16
(
5
),
053707
(
2009
).
36.
V.
Nosenko
and
J.
Goree
, “
Shear flows and shear viscosity in a two-dimensional Yukawa system (dusty plasma)
,”
Phys. Rev. Lett.
93
(
15
),
155004
(
2004
).
37.
R.
Heidemann
,
S.
Zhdanov
,
K. R.
Sütterlin
,
H. M.
Thomas
, and
G. E.
Morfill
, “
Shear flow instability at the interface among two streams of a highly dissipative complex plasma
,”
Europhys. Lett.
96
(
1
),
15001
(
2011
).
38.
A.
Gupta
,
R.
Ganesh
, and
A.
Joy
, “
Kolmogorov flow in two dimensional strongly coupled dusty plasma
,”
Phys. Plasmas
21
(
7
),
073707
(
2014
).
39.
S.
Zhdanov
,
M.
Schwabe
,
C.
Räth
,
H. M.
Thomas
, and
G. E.
Morfill
, “
Wave turbulence observed in an auto-oscillating complex (dusty) plasma
,”
Europhys. Lett.
110
(
3
),
35001
(
2015
).
40.
Y.-Y.
Tsai
,
M.-C.
Chang
, and
I.
Lin
, “
Observation of multifractal intermittent dust-acoustic-wave turbulence
,”
Phys. Rev. E
86
(
4
),
045402
(
2012
).
41.
J.
Pramanik
,
B. M.
Veeresha
,
G.
Prasad
,
A.
Sen
, and
P. K.
Kaw
, “
Experimental observation of dust-acoustic wave turbulence
,”
Phys. Lett. A
312
(
1
),
84
90
(
2003
).
42.
A. N.
Kolmogorov
, “
The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers
,”
Proc. R. Soc., A
434
,
9
13
(
1991
).
43.
H. H.
Wensink
,
J.
Dunkel
,
S.
Heidenreich
,
K.
Drescher
,
R. E.
Goldstein
,
H.
Löwen
, and
J. M.
Yeomans
, “
Meso-scale turbulence in living fluids
,”
Proc. Natl. Acad. Sci. U. S. A.
109
(
36
),
14308
14313
(
2012
).
44.
M.
Bourgoin
,
R.
Kervil
,
C.
Cottin-Bizonne
,
F.
Raynal
,
R.
Volk
, and
C.
Ybert
, “
Kolmogorovian active turbulence of a sparse assembly of interacting Marangoni surfers
,”
Phys. Rev. X
10
(
2
),
021065
(
2020
).
45.
J. K.
Meyer
,
I.
Laut
,
S. K.
Zhdanov
,
V.
Nosenko
, and
H. M.
Thomas
, “
Coupling of noncrossing wave modes in a two-dimensional plasma crystal
,”
Phys. Rev. Lett.
119
(
25
),
255001
(
2017
).
46.
C. M.
Ticoş
,
D.
Ticoş
, and
J. D.
Williams
, “
Kinetic effects in a plasma crystal induced by an external electron beam
,”
Phys. Plasmas
26
(
4
),
043702
(
2019
).
47.
V.
Nosenko
,
M.
Pustylnik
,
M.
Rubin-Zuzic
,
A. M.
Lipaev
,
A. V.
Zobnin
,
A. D.
Usachev
,
H. M.
Thomas
,
M. H.
Thoma
,
V. E.
Fortov
,
O.
Kononenko
, and
A.
Ovchinin
, “
Shear flow in a three-dimensional complex plasma in microgravity conditions
,”
Phys. Rev. Res.
2
(
3
),
033404
(
2020
).
48.
C.
Liaw
, “
Approach to the extended states conjecture
,”
J. Stat. Phys.
153
(
6
),
1022
1038
(
2013
).
49.
W.
King
,
R. C.
Kirby
, and
C.
Liaw
, “
Delocalization for the 3D discrete random Schroedinger operator at weak disorder
,”
J. Phys. A
47
(
30
),
305202
(
2014
).
50.
J. L.
Padgett
,
E. G.
Kostadinova
,
C. D.
Liaw
,
K.
Busse
,
L. S.
Matthews
, and
T. W.
Hyde
, “
Anomalous diffusion in one-dimensional disordered systems: A discrete fractional Laplacian method
,”
J. Phys. A
53
(
13
),
135205
(
2020
).
51.
V.
Jakšić
and
Y.
Last
, “
Simplicity of singular spectrum in Anderson-type Hamiltonians
,”
Duke Math. J.
133
(
1
),
185
204
(
2006
).
52.
J. K.
Olthoff
and
K. E.
Greenberg
, “
The gaseous electronics conference RF reference cell—An introduction
,”
J. Res. Natl. Inst. Stand. Technol.
100
(
4
),
327
339
(
1995
).
53.
V.
Land
,
E.
Shen
,
B.
Smith
,
L.
Matthews
, and
T.
Hyde
, “
Experimental and computational characterization of a modified GEC cell for dusty plasma experiments
,”
New J. Phys.
11
(
6
),
063024
(
2009
).
54.
H. M.
Anderson
and
S. B.
Radovanov
, “
Dusty plasma studies in the gaseous electronics conference reference cell
,”
J. Res. Natl. Inst. Stand. Technol.
100
(
4
),
449
462
(
1995
).
55.
J. B.
Pieper
,
J.
Goree
, and
R. A.
Quinn
, “
Experimental studies of two‐dimensional and three‐dimensional structure in a crystallized dusty plasma
,”
J. Vac. Sci. Technol. A
14
(
2
),
519
524
(
1996
).
56.
G.
Gogia
and
J. C.
Burton
, “
Emergent bistability and switching in a nonequilibrium crystal
,”
Phys. Rev. Lett.
119
(
17
),
178004
(
2017
).
57.
L. S.
Matthews
,
D. L.
Sanford
,
E. G.
Kostadinova
,
K. S.
Ashrafi
,
E.
Guay
, and
T. W.
Hyde
, “
Dust charging in dynamic ion wakes
,”
Phys. Plasmas
27
(
2
),
023703
(
2020
).
58.
L. S.
Matthews
and
T. W.
Hyde
, “
Effect of dipole–dipole charge interactions on dust coagulation
,”
New J. Phys.
11
(
6
),
063030
(
2009
).
59.
L. S.
Matthews
and
T. W.
Hyde
, “
Effects of the charge-dipole interaction on the coagulation of fractal aggregates
,”
IEEE Trans. Plasma Sci.
32
(
2
),
586
593
(
2004
).
60.
L. S.
Matthews
and
T. W.
Hyde
, “
Charged grains in Saturn's F-ring: Interaction with Saturn's magnetic field
,”
Adv. Space Res.
33
(
12
),
2292
2297
(
2004
).
61.
L. S.
Matthews
and
T. W.
Hyde
, “
Charging and growth of fractal dust grains
,”
IEEE Trans. Plasma Sci.
36
(
1
),
310
314
(
2008
).
62.
L. S.
Matthews
and
T. W.
Hyde
, “
Gravitoelectrodynamics in Saturn's F ring: Encounters with Prometheus and Pandora
,”
J. Phys. A
36
(
22
),
6207
(
2003
).
63.
M.
Sun
,
L. S.
Matthews
, and
T. W.
Hyde
, “
Effect of multi-sized dust distribution on local plasma sheath potentials
,”
Adv. Space Res.
38
(
11
),
2575
2580
(
2006
).
64.
L. S.
Matthews
,
K.
Qiao
, and
T. W.
Hyde
, “
Dynamics of a dust crystal with two different size dust species
,”
Adv. Space Res.
38
(
11
),
2564
2570
(
2006
).
65.
K.
Qiao
,
J.
Kong
,
Z.
Zhang
,
L. S.
Matthews
, and
T. W.
Hyde
, “
Mode couplings and conversions for horizontal dust particle pairs in complex plasmas
,”
IEEE Trans. Plasma Sci.
41
(
4
),
745
753
(
2013
).
66.
K.
Qiao
,
J.
Kong
,
E. V.
Oeveren
,
L. S.
Matthews
, and
T. W.
Hyde
, “
Mode couplings and resonance instabilities in dust clusters
,”
Phys. Rev. E
88
(
4
),
043103
(
2013
).
67.
J.
Elgeti
,
R. G.
Winkler
, and
G.
Gompper
, “
Physics of microswimmers—Single particle motion and collective behavior: A review
,”
Rep. Prog. Phys.
78
(
5
),
056601
(
2015
).
68.
C.
Bechinger
,
R. D.
Leonardo
,
H.
Löwen
,
C.
Reichhardt
,
G.
Volpe
, and
G.
Volpe
, “
Active particles in complex and crowded environments
,”
Rev. Mod. Phys.
88
(
4
),
045006
(
2016
).
69.
V.
Nosenko
,
A. V.
Ivlev
, and
G. E.
Morfill
, “
Laser-induced rocket force on a microparticle in a complex (dusty) plasma
,”
Phys. Plasmas
17
(
12
),
123705
(
2010
).
70.
V.
Nosenko
,
F.
Luoni
,
A.
Kaouk
,
M.
Rubin-Zuzic
, and
H.
Thomas
, “
Active Janus particles in a complex plasma
,”
Phys. Rev. Res
2
(
3
),
033226
(
2020
).
71.
Y.-K.
Tsang
, “
Nonuniversal velocity probability densities in two-dimensional turbulence: The effect of large-scale dissipation
,”
Phys. Fluids
22
(
11
),
115102
(
2010
).
72.
A.
Bracco
,
J.
LaCasce
,
C.
Pasquero
, and
A.
Provenzale
, “
The velocity distribution of barotropic turbulence
,”
Phys. Fluids
12
(
10
),
2478
2488
(
2000
).
73.
C.
Pasquero
,
A.
Provenzale
, and
A.
Babiano
, “
Parameterization of dispersion in two-dimensional turbulence
,”
J. Fluid Mech.
439
,
279
303
(
2001
).
74.
G.
Livadiotis
, “
Chapter 5—Basic plasma parameters described by kappa distributions
,” in
Kappa Distributions
, edited by
G.
Livadiotis
(
Elsevier
,
2017
), pp.
249
312
.
75.
G. M.
Zaslavsky
,
D.
Stevens
, and
H.
Weitzner
, “
Self-similar transport in incomplete chaos
,”
Phys. Rev. E
48
,
1683
(
1993
).
76.
T. S.
Strickler
,
T. K.
Langin
,
P.
McQuillen
,
J.
Daligault
, and
T. C.
Killian
, “
Experimental Measurement of self-diffusion in a strongly coupled plasma
,”
Phys. Rev. X
6
(
2
),
021021
(
2016
).
77.
T.
Ott
,
M.
Bonitz
,
Z.
Donkó
, and
P.
Hartmann
, “
Superdiffusion in quasi-two-dimensional Yukawa liquids
,”
Phys. Rev. E
78
(
2
),
026409
(
2008
).
78.
B.
Liu
and
J.
Goree
, “
Superdiffusion and non-Gaussian statistics in a driven-dissipative 2D dusty plasma
,”
Phys. Rev. Lett.
100
(
5
),
055003
(
2008
).
79.
B.
Liu
and
J.
Goree
, “
Superdiffusion in two-dimensional Yukawa liquids
,”
Phys. Rev. E
75
(
1
),
016405
(
2007
).
80.
L.-J.
Hou
,
A.
Piel
, and
P. K.
Shukla
, “
Self-diffusion in 2D dusty-plasma liquids: Numerical-simulation results
,”
Phys. Rev. Lett.
102
(
8
),
085002
(
2009
).
81.
S.
Nunomura
,
D.
Samsonov
,
S.
Zhdanov
, and
G.
Morfill
, “
Self-diffusion in a liquid complex plasma
,”
Phys. Rev. Lett.
96
(
1
),
015003
(
2006
).
82.
T.
Ott
and
M.
Bonitz
, “
Anomalous and Fickian diffusion in two-dimensional dusty plasmas
,”
Contrib. Plasma Phys.
49
(
10
),
760
764
(
2009
).
83.
O. S.
Vaulina
and
S. V.
Vladimirov
, “
Diffusion and dynamics of macro-particles in a complex plasma
,”
Phys. Plasmas
9
(
3
),
835
840
(
2002
).
84.
T.
Ott
and
M.
Bonitz
, “
Is diffusion anomalous in two-dimensional Yukawa liquids?
,”
Phys. Rev. Lett.
103
(
19
),
195001
(
2009
).
85.
E. G.
Kostadinova
,
J. L.
Padgett
,
C. D.
Liaw
,
L. S.
Matthews
, and
T. W.
Hyde
, “
Numerical study of anomalous diffusion of light in semicrystalline polymer structures
,”
Phys. Rev. Res.
2
(
4
),
043375
(
2020
).
86.
V. V.
Uchaikin
, “
Self-similar anomalous diffusion and Levy-stable laws
,”
Phys.-Usp.
46
(
8
),
821
(
2003
).
87.
R.
Metzler
and
J.
Klafter
, “
The random walk's guide to anomalous diffusion: A fractional dynamics approach
,”
Phys. Rep.
339
(
1
),
1
77
(
2000
).
88.
T.
Frugé Jones
,
E. G.
Kostadinova
,
J. L.
Padgett
, and
Q.
Sheng
, “
A series representation of the discrete fractional Laplace operator of arbitrary order
,”
J. Math. Anal. Appl.
504
(
1
),
125323
(
2021
).
89.
D.
Hundertmark
, “
A short introduction to Anderson localization
,” in
Analysis and Stochastics of Growth Processes and Interface Models
(
Oxford University Press
,
Oxford
,
2008
), pp.
194
218
.
90.
H.
Charan
and
R.
Ganesh
, “
Molecular dynamics study of flow past an obstacle in strongly coupled Yukawa liquids
,”
Phys. Plasmas
23
(
12
),
123703
(
2016
).
91.
A.
Douglass
,
V.
Land
,
K.
Qiao
,
L.
Matthews
, and
T.
Hyde
, “
Determination of the levitation limits of dust particles within the sheath in complex plasma experiments
,”
Phys. Plasmas
19
(
1
),
013707
(
2012
).
92.
V.
Land
,
L. S.
Matthews
,
T. W.
Hyde
, and
D.
Bolser
, “
Fluid modeling of void closure in microgravity noble gas complex plasmas
,”
Phys. Rev. E
81
(
5
),
056402
(
2010
).
93.
J. D.
Williams
and
E.
Thomas
, “
Initial measurement of the kinetic dust temperature of a weakly coupled dusty plasma
,”
Phys. Plasmas
13
(
6
),
063509
(
2006
).
94.
J. D.
Williams
and
E.
Thomas
, “
Measurement of the kinetic dust temperature of a weakly coupled dusty plasma
,”
Phys. Plasmas
14
(
6
),
063702
(
2007
).
95.
B.
Liu
,
J.
Goree
,
M. Y.
Pustylnik
,
H. M.
Thomas
,
V. E.
Fortov
,
A. M.
Lipaev
,
A. D.
Usachev
,
V. I.
Molotkov
,
O. F.
Petrov
, and
M. H.
Thoma
, “
Particle velocity distribution in a three-dimensional dusty plasma under microgravity conditions
,”
AIP Conf. Proc.
1925
(
1
),
020005
(
2018
).
You do not currently have access to this content.