The role of flux-limited thermal conduction on the fusion performance of the uniaxially driven targets studied by Derentowicz et al. [J. Tech. Phys. 18, 465 (1977) and J. Tech. Phys. 25, 135 (1977)] is explored as part of a wider effort to understand and quantify uncertainties in inertial confinement fusion (ICF) systems sharing similarities with First Light Fusion's projectile-driven concept. We examine the role of uncertainties in plasma microphysics and different choices for the numerical implementation of the conduction operator on simple metrics encapsulating the target performance. The results indicate that choices that affect the description of ionic heat flow between the heated fusion fuel and the gold anvil used to contain it are the most important. The electronic contribution is found to be robustly described by local diffusion. The sensitivities found suggest a prevalent role for quasi-nonlocal ionic transport, especially in the treatment of conduction across material interfaces with strong gradients in temperature and conductivity. We note that none of the simulations produce neutron yields that substantiate those reported by Derentowicz et al. [J. Tech. Phys. 25, 135 (1977)], leaving open future studies aimed at more fully understanding this class of ICF systems.

1.
J. A.
Gaffney
,
D.
Clark
,
V.
Sonnad
, and
S. B.
Libby
, “
Development of a Bayesian method for the analysis of inertial confinement fusion experiments on the NIF
,”
Nucl. Fusion
53
,
073032
(
2013
).
2.
J. A.
Gaffney
,
D.
Clark
,
V.
Sonnad
, and
S. B.
Libby
, “
Bayesian inference of inaccuracies in radiation transport physics from inertial confinement fusion experiments
,”
High Energy Density Phys.
9
,
457
(
2013
).
3.
J.
Melvin
,
H.
Lim
,
V.
Rana
,
B.
Cheng
,
J.
Glimm
,
D. H.
Sharp
, and
D. C.
Wilson
, “
Sensitivity of inertial confinement fusion hot spot properties to the deuterium-tritium fuel adiabat
,”
Phys. Plasmas
22
,
022708
(
2015
).
4.
T. M.
Guymer
,
A. S.
Moore
,
J.
Morton
,
J. L.
Kline
,
S.
Allan
,
N.
Bazin
,
J.
Benstead
,
C.
Bentley
,
A. J.
Comley
,
J.
Cowan
,
K.
Flippo
,
W.
Garbett
,
C.
Hamilton
,
N. E.
Lanier
,
K.
Mussack
,
K.
Obrey
,
L.
Reed
,
D. W.
Schmidt
,
R. M.
Stevenson
,
J. M.
Taccetti
, and
J.
Workman
, “
Quantifying equation-of-state and opacity errors using integrated supersonic diffusive radiation flow experiments on the National Ignition Facility
,”
Phys. Plasmas
22
,
043303
(
2015
).
5.
H.
Derentowicz
,
S.
Kaliski
, and
Z.
Ziółkowski
, “
Generation of fusion neutrons in a deuterium filled cone by means of explosive implosion of polythene shell. I. Theoretical estimations
,”
J. Tech. Phys.
18
,
465
471
(
1977
), available at https://ui.adsabs.harvard.edu/abs/1977JTePh..18..465D/abstract.
6.
H.
Derentowicz
,
S.
Kaliski
,
J.
Wolski
, and
Z.
Ziółkowski
, “
Generation of thermonuclear fusion neutrons by means of a pure explosion. II. Experimental results
,”
J. Tech. Phys.
25
,
135
147
(
1977
), available at https://inis.iaea.org/search/search.aspx?orig_q=RN:11497996.
7.
I. K.
Krasyuk
,
A. Yu.
Semenov
, and
A. A.
Charakhch'yan
, “
Use of conic targets in inertial confinement fusion
,”
Quantum Electron.
35
(
9
),
769
(
2005
).
8.
A.
Shyam
and
M.
Srinivasan
, “
Investigation of the feasibility of conical target compression experiments using exploding foil driven hyper-velocity liners
,”
Atomkernenerg. Kerntech.
44
,
196
(
1984
), available at https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=15045304.
9.
V. I.
Vovchenko
,
A. S.
Goncharov
,
Iu. S.
Kasianov
,
O. V.
Kozlov
,
I. K.
Krasiuk
,
A. A.
Maliutin
,
M. G.
Pastukhov
,
P. P.
Pashinin
, and
A. M.
Prokhorov
, “
Generation of thermonuclear neutrons by laser action on a conical target
,”
J. Exp. Theor. Phys. Lett.
26
,
628
(
1977
), available at https://ui.adsabs.harvard.edu/abs/1977ZhPmR..26..628V/abstract.
10.
R. J.
Mason
,
R. J.
Fries
, and
E. H.
Farnum
, “
Conical targets for implosion studies with a CO2 laser
,”
Appl. Phys. Lett.
34
,
14
(
1979
).
11.
S. L.
Bogolyubskii
,
B. P.
Gerasimov
,
V. I.
Liksonov
,
A. P.
Mikhailov
,
Y. P.
Popov
,
L. I.
Rudakov
,
A. A.
Samarskii
, and
V. P.
Smirnov
, “
Thermonuclear neutron yield from a plasma compressed by a shell
,”
J. Exp. Theor. Phys. Lett.
24
,
182
(
1976
), available at https://www.osti.gov/biblio/7322234.
12.
L.
Spitzer
and
R.
Härm
, “
Transport phenomena in a completely ionized gas
,”
Phys. Rev.
89
,
977
(
1953
).
13.
J. H.
Ferziger
and
H. G.
Kaper
,
Mathematical Theory of Transport Processes in Gases
(
North-Holland
,
1972
).
14.
J.
Larsen
,
Foundations of High-Energy-Density Physics
(
Cambridge University Press
,
2017
).
15.
F.
Graziani
,
M. P.
Dejarlais
,
R.
Redmer
, and
S. B.
Trickey
,
Frontiers and Challenges in Warm Dense Matter: Lecture Notes in Computational Science and Engineering
(
Springer International Publishing
,
Switzerland
,
2014
).
16.
O.
Larroche
, “
Kinetic simulations of fuel ion transport in ICF target implosions
,”
Eur. Phys. J. D
27
,
131
(
2003
).
17.
O.
Larroche
, “
Ion Fokker-Planck simulation of D3He gas target implosions
,”
Phys. Plasmas
19
,
122706
(
2012
).
18.
W. T.
Taitano
,
L.
Chacón
, and
A. N.
Simakov
, “
An adaptive, implicit, conservative, 1D2V multi-species Vlasov-Fokker-Planck multi-scale solver in planar geometry
,”
J. Comput. Phys.
365
,
173
(
2018
), available at https://www.sciencedirect.com/science/article/pii/S0021999118301591.
19.
H. G.
Rinderknecht
,
P. A.
Amendt
,
S. C.
Wilks
, and
G.
Collins
, “
Kinetic physics in ICF: Present understanding and future directions
,”
Plasma Phys. Controlled Fusion
60
,
064001
(
2018
).
20.
G. P.
Schurtz
,
Ph. D.
Nicolaï
, and
M.
Busquet
, “
A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes
,”
Phys. Plasmas
7
,
4238
(
2000
).
21.
W.
Manheimer
,
D.
Colombant
, and
V.
Goncharov
, “
The development of a Krook model for nonlocal transport in laser produced plasmas. I. Basic theory
,”
Phys. Plasmas
15
,
083103
(
2008
).
22.
D.
Colombant
and
W.
Manheimer
, “
The development of a Krook model for nonlocal transport in laser produced plasmas. II. Application of the theory and comparisons with other models
,”
Phys. Plasmas
15
,
083104
(
2008
).
23.
D.
Cao
,
G.
Moses
, and
J.
Delettrez
, “
Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics
,”
Phys. Plasmas
22
,
082308
(
2015
).
24.
D.
Del Sorbo
,
J.-L.
Feugeas
,
Ph.
Nicolaí
,
M.
Olazabal-Loume
,
B.
Dubroca
,
S.
Guisset
,
M.
Touati
, and
V.
Tikhonchuk
, “
Reduced entropic model for studies of multidimensional nonlocal transport in high-energy-density plasmas
,”
Phys. Plasmas
22
,
082706
(
2015
).
25.
M.
Holec
,
J.
Nikl
, and
S.
Weber
, “
Nonlocal transport hydrodynamic model for laser heated plasmas
,”
Phys. Plasmas
25
,
032704
(
2018
).
26.
N. M.
Hoffman
,
G. B.
Zimmerman
,
K.
Molvig
,
H. G.
Rinderknecht
,
M. J.
Rosenberg
,
B. J.
Albright
,
A. N.
Simakov
,
H.
Sio
,
A. B.
Zylstra
,
M.
Gatu Johnson
,
F. H.
Séguin
,
J. A.
Frenje
,
C. K.
Li
,
R. D.
Petrasso
,
D. M.
Higdon
,
G.
Srinivasan
,
V. Yu.
Glebov
,
C.
Stoeckl
,
W.
Seka
, and
T. C.
Sangster
, “
Approximate model for the ion-knetic regime in inertial-confinement-fusion capsule implosions
,”
Phys. Plasmas
22
,
052707
(
2015
).
27.
J. P.
Brodrick
,
R. J.
Kingham
,
M. M.
Marinak
,
M. V.
Patel
,
A. V.
Chankin
,
J. T.
Omotani
,
M. V.
Umansky
,
D.
Del Sorbo
,
B.
Dudson
,
J. T.
Parker
,
G. D.
Kerbel
,
M.
Sherlock
, and
C. P.
Ridgers
, “
Testing nonlocal models of electron thermal conduction for magnetic and inertial confinement fusion applications
,”
Phys. Plasmas
24
,
092309
(
2017
).
28.
M.
Sherlock
,
J. P.
Brodrick
, and
C. P.
Ridgers
, “
A comparison of non-local electron transport model for laser-plasmas relevant to inertial confinement fusion
,”
Phys. Plasmas
24
,
082706
(
2017
).
29.
R. J.
Henchen
,
M.
Sherlock
,
W.
Rozmus
,
J.
Katz
,
D.
Cao
,
J. P.
Palastro
, and
D. H.
Froula
, “
Observation of nonlocal heat flux using Thomson scattering
,”
Phys. Rev. Lett.
121
,
125001
(
2018
).
30.
R. J.
Henchen
,
M.
Sherlock
,
W.
Rozmus
,
J.
Katz
,
P. E.
Masson-Laborde
,
D.
Cao
,
J. P.
Palastro
, and
D. H.
Froula
, “
Measuring heat flux from collective Thomson scattering with non-Maxwellian distribution functions
,”
Phys. Plasmas
26
,
032104
(
2019
).
31.
R. L.
Morse
and
C. W.
Nielson
, “
Occurrence of high-energy electrons and surface expansion in laser-heated target plasmas
,”
Phys. Fluids
16
,
909
(
1973
).
32.
R. C.
Malone
,
R. L.
McCrory
, and
R. L.
Morse
, “
Indications of strongly flux-limited electron thermal conduction in laser-target experiments
,”
Phys. Rev. Lett.
34
,
721
(
1975
).
33.
A. R.
Bell
,
R. G.
Evans
, and
D. J.
Nicholas
, “
Electron energy transport in steep temperature gradients in laser-produced plasmas
,”
Phys. Rev. Lett.
46
,
243
(
1981
).
34.
N. B.
Meezan
,
D. T.
Woods
,
N.
Izumi
,
H.
Chen
,
H. A.
Scott
,
M. B.
Schneider
,
D. A.
Liedahl
,
O. S.
Jones
,
G. B.
Zimmerman
,
J. D.
Moody
,
O. L.
Landen
, and
W. W.
Hsing
, “
Evidence of restricted heat transport in National Ignition Facility Hohlraums
,”
Phys. Plasmas
27
,
102704
(
2020
).
35.
M. S.
Murillo
, “
X-ray Thomson scattering in warm dense matter at low frequencies
,”
Phys. Rev. E
81
,
036403
(
2010
).
36.
L. G.
Stanton
,
J. N.
Glosli
, and
M. S.
Murillo
, “
Multiscale molecular dynamics for heterogeneous charged systems
,”
Phys. Rev. X
8
,
021044
(
2018
).
37.
D.
Jian
,
B.
Fix
,
J.
Glimm
,
J.
Xicheng
,
L.
Xiolin
,
L.
Yuanhua
, and
W.
Lingling
, “
A simple package for front tracking
,”
J. Comput. Phys.
213
(
2
),
613
(
2006
).
38.
M.
Gittings
,
R.
Weaver
,
M.
Clover
,
T.
Betlach
,
N.
Byrne
,
R.
Coker
,
E.
Dendy
,
R.
Hueckstaedt
,
K.
New
,
W. R.
Oakes
,
D.
Ranta
, and
R.
Stefan
, “
The RAGE radiation-hydrodynamic code
,”
Comput. Sci. Discovery
1
,
015005
(
2008
).
39.
E. L.
Vold
,
R. M.
Rauenzahn
,
C. H.
Aldrich
,
K.
Molvig
,
A. N.
Simikov
, and
B. M.
Haines
, “
Plasma transport in an Eulerian AMR code
,”
Phys. Plasmas
24
,
042702
(
2017
).
40.
D.
Mihalas
and
R.
Weaver
, “
Time-dependent radiative transfer with automatic flux limiting
,”
J. Quant. Spectrosc. Radiat. Transfer
28
(
3
),
213
(
1982
).
41.
K.
McGlinchey
, “
Radiation-hydrodynamics simulations of the impact of instabilities and asymmetries on inertial confinement fusion
,” Ph.D. thesis (
Imperial College, London
,
2017
).
42.
S.
Faik
,
A.
Tauschwitz
, and
I.
Iosilevskiy
, “
The equation of state package FEOS for high energy density matter
,”
Comput. Phys. Commun.
227
,
117
(
2018
).
43.
S.
Atzeni
and
J.
Meyer-ter-Vehn
,
The Physics of Inertial Fusion
(
Oxford University Press
,
2004
).
44.
H.-S.
Bosch
and
G. M.
Hale
, “
Improved formulas for fusion cross-sections and thermal reactivities
,”
Nucl. Fusion
32
(
4
),
611
(
1992
).
45.
B.
Fryxell
,
K.
Olson
,
P.
Ricker
,
F. X.
Timmes
,
M.
Zingale
,
D. Q.
Lamb
,
P.
MacNeice
,
R.
Rosner
,
J. W.
Truran
, and
H.
Tufo
, “
FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes
,”
Astrophys. J.: Suppl. Ser.
131
,
273
(
2000
).
46.
C. R. D.
Brown
,
D. J.
Hoarty
,
S. F.
James
,
D.
Swatton
,
S. J.
Hughes
,
J. W.
Morton
,
T. M.
Guymer
,
M. P.
Hill
,
D. A.
Chapman
,
J. E.
Andrew
,
A. J.
Comley
,
R.
Shepherd
,
J.
Dunn
,
H.
Chen
,
M.
Schneider
,
G.
Brown
,
P.
Beiersdorfer
, and
J.
Emig
, “
Measurements of electron transport in foils irradiated with a picosecond time scale laser pulse
,”
Phys. Rev. Lett.
106
,
185003
(
2011
).
47.
D. J.
Hoarty
,
P.
Allan
,
S. F.
James
,
C. R. D.
Brown
,
L. M. R.
Hobbs
,
M. P.
Hill
,
J. W. O.
Harris
,
J.
Morton
,
M. G.
Brookes
,
R.
Shepherd
,
J.
Dunn
,
H.
Chen
,
E.
Von Marley
,
P.
Beiersdorfer
,
H. K.
Chung
,
R. W.
Lee
,
G.
Brown
, and
J.
Emig
, “
Observations of the effect of ionization-potential depression in hot dense plasma
,”
Phys. Rev. Lett.
110
,
265003
(
2013
).
48.
C.-K.
Huang
,
K.
Molvig
,
B. J.
Albright
,
E. S.
Dodd
,
E. L.
Vold
,
G.
Kagan
, and
N. M.
Hoffman
, “
Study of the ion kinetic effects in ICF runaway burn using a quasi-1D hybrid model
,”
Phys. Plasmas
24
,
022704
(
2017
).
49.
T. J.
Goldsack
,
J. D.
Kilkenny
,
B. J.
MacGowan
,
P. F.
Cunningham
,
C. L. S.
Lewis
,
M. H.
Key
, and
P. T.
Rumsby
, “
Evidence of large heat fluxes from the mass ablation rate of laser-irradiated spherical targets
,”
Phys. Fluids
25
,
1634
(
1982
).
50.
M.
Rosen
,
H.
Scott
,
D.
Hinkel
,
E.
Williams
,
D.
Callahan
,
R.
Town
,
L.
Divol
,
P.
Michel
,
W.
Kruer
,
L.
Suter
,
R.
London
,
J.
Harte
, and
G.
Zimmerman
, “
The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums
,”
High Energy Density Phys.
7
,
180
(
2011
).
51.
J. D.
Huba
,
NRL Plasma Formulary
(
The Office of Naval Research
,
2016
).
52.
J. T.
Larsen
and
S. M.
Lane
, “
HYADES—A plasma hydrodynamics code for dense plasmas
,”
J. Quant. Spectrosc. Radiat. Transfer
51
,
179
(
1994
).
53.
M.
Basko
, “
DEIRA: A 1-D 3-T hydrodynamic code for simulating ICF targets driven by fast ion beams
,” (
Institute for Theoretical and Experimental Physics
,
Moscow
,
2006
), available at https://www.semanticscholar.org/paper/DEIRA-A-1-D-3T-hydrodynamic-code-for-simulating-ICF-Basko/2667bf5e1f9348f23595aa6afc7ad9bf7daea034.
54.
R.
Ramis
,
J.
Meyer-ter-Vehn
, and
J.
Ramírez
, “
MULTI2D—A computer code for two-dimensional radiation hydrodynamics
,”
Comput. Phys. Commun.
180
,
977
(
2009
).
55.
G. C.
Pomraning
,
The Equations of Radiation Hydrodynamics
(
Courier Corporation
,
2005
).
56.
C. D.
Meyer
,
D. S.
Balsara
, and
T.
Aslam
, “
A stabilized Runge-Kutta-Legendre method for explicit super-time-stepping of parabolic and mixed equations
,”
J. Comput. Phys.
257
,
594
(
2014
).
57.
J.
Blazek
,
Computational Fluid Dynamics: Principles and Applications
(
Butterworth-Heinemann
,
2005
).
58.
S. Y.
Kadioglu
,
R. R.
Nourgaliev
, and
V. A.
Mousseau
, “
A comparative study of the harmonic and arithmetic averaging of diffusion coefficients for non-linear heat conduction problems
,”
Technical Report No. INL/EXT-08-13999
(
Idaho National Laboratory
,
2008
), available at https://www.researchgate.net/publication/264873829_A_Comparative_Study_of_the_Harmonic_and_Arithmetic_Averaging_of_Diffusion_Coefficients_for_Non-Linear_Heat_Conduction_Problems.
59.
K. C.
Chang
and
U. J.
Payne
, “
Analytical and numerical approaches for heat conduction in composite materials
,”
Math. Comput. Modell.
14
,
899
(
1990
).
60.
Y.-Y.
Tsui
,
S.-W.
Lin
, and
K.-J.
Ding
, “
Modeling of heat transfer across the interface in two-fluid flows
,”
Numer. Heat Transfer, Part B
66
,
162
(
2014
).
61.
S. V.
Patankar
,
Numerical Heat Transfer and Fluid Flow
(
Hemisphere Publishing Corporation
,
1980
).
62.
F. P.
Incropera
and
D. P.
De Witt
,
Fundamentals of Heat and Mass Transfer
(
Wiley
,
2002
).
63.
J. R.
Kamm
,
J. S.
Brock
,
S. T.
Brandon
,
D. L.
Cotrell
,
B.
Johnson
,
P.
Knupp
,
W. J.
Rider
,
T. G.
Truncano
, and
V. G.
Weirs
, “
Enhanced verification testsuite for physics simulation code
,”
Technical Report No. LA-14379
(
Los Alamos National Laboratory
,
2008
).
64.
Y. B.
Zeldovich
and
Y. P.
Raizer
,
Physics of Shock Waves and High Temperature Hydrodynamic Phenomena
(
Dover
,
Mineola, NY
,
2002
).
65.
P.
Reinicke
and
J.
Meyer-ter-Vehn
, “
The point explosion with heat conduction
,”
Phys. Fluids A
3
,
1807
(
1991
).
66.
V. D.
Shafranov
, “
The structure of shock waves in a plasma
,”
Sov. Phys. J. Exp. Theor. Phys.
5
,
1183
(
1957
), available at http://www.jetp.ac.ru/cgi-bin/dn/e_005_06_1183.pdf.
67.
D. C.
Maddix
,
L.
Sampaio
, and
M.
Gerritsen
, “
Numerical artifacts in the generalized porous medium equation: Why harmonic averaging itself is not to blame
,”
J. Comput. Phys.
361
,
280
(
2018
).
68.
B.
van der Holst
,
G.
Tóth
,
I. V.
Sokolov
,
K. G.
Powell
,
J. P.
Holloway
,
E. S.
Myra
,
Q.
Stout
,
M. L.
Adams
,
J. E.
Morel
,
S.
Karni
,
B.
Fryxell
, and
R. P.
Drake
, “
CRASH: A block-adaptive-mesh code for radiative shock hyrdodynamics—Implementation and verification
,”
Astrophys. J. Suppl. Ser.
23
,
194
(
2011
).
69.
L.
Spitzer
,
Physics of Fully Ionized Gases
(
Interscience
,
New York, NY
,
1962
).
70.
J. R.
Haack
,
C. D.
Hauck
, and
M. S.
Murillo
, “
Interfacial mixing in high-energy-density matter with a multiphysics kinetic model
,”
Phys. Rev. E
96
,
063310
(
2017
).
71.
M.
Ross
,
F. H.
Ree
, and
D. A.
Young
, “
The equation of state of molecular hydrogen at very high density
,”
J. Chem. Phys.
79
,
1487
(
1983
).
72.
Y. T.
Lee
and
R. M.
More
, “
An electron conductivity model for dense plasmas
,”
Phys. Fluids
27
,
1273
(
1984
).
73.
L. G.
Stanton
and
M. S.
Murillo
, “
Ionic transport in high-energy-density matter
,”
Phys. Rev. E
93
,
043203
(
2016
).
74.
E. M.
Apfelbaum
, “
The calculations of thermophysical properties of low-temperature gallium plasma
,”
Phys. Plasmas
22
,
092703
(
2020
).
75.
G.
Hazak
,
Z.
Zinamon
,
Y.
Rosenfeld
, and
M. W. C.
Dharma-wardana
, “
Temperature relaxation in two-temperature states of dense electron-ion systems
,”
Phys. Rev. E
64
,
066411
(
2001
).
76.
D. O.
Gericke
, “
Kinetic approach to temperature relaxation in dense plasmas
,”
J. Phys.: Conf. Ser.
11
,
111
(
2005
).
77.
J.
Vorberger
and
D. O.
Gericke
, “
Comparison of electron-ion energy transfer in dense plasmas obtained from numerical simulations and quantum kinetic theory
,”
High Energy Density Phys.
10
,
1
(
2014
).
78.
M. W. C.
Dharma-wardana
, “
Nature of coupled-mode contributions to hot electron relaxation in semiconductors
,”
Phys. Rev. Lett.
66
,
197
(
1991
).
79.
M. W. C.
Dharma-wardana
and
F.
Perrot
, “
Energy relaxation and the quasiequation of state of a dense two-temperature nonequilibrium plasma
,”
Phys. Rev. E
58
,
3705
(
1998
).
80.
J.
Vorberger
,
D. O.
Gericke
,
Th.
Bornath
, and
M.
Schlanges
, “
Energy relaxation in dense, strongly coupled two-temperature plasma
,”
Phys. Rev. E
81
,
046404
(
2010
).
81.
D. A.
Chapman
,
J.
Vorberger
, and
D. O.
Gericke
, “
Reduced coupled-mode approach to electron-ion energy relaxation
,”
Phys. Rev. E
88
,
013102
(
2013
).
82.
S.
Ichimaru
and
S.
Tanaka
, “
Theory of interparticle correlations in dense, high-temperature plasmas. V. Electric and thermal conductivities
,”
Phys. Rev. A
32
,
1790
(
1985
).
83.
H.
Kitamura
and
S.
Ichimaru
, “
Electric and thermal resistivities in high-Z plasmas
,”
Phys. Rev. E
51
,
6004
(
1995
).
84.
S. X.
Hu
,
L. A.
Collins
,
V. N.
Goncharov
,
T. R.
Boehly
,
R.
Epstein
,
R. L.
McCrory
, and
S.
Skupsky
, “
First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications
,”
Phys. Rev. E
90
,
033111
(
2014
).
85.
S. X.
Hu
,
L. A.
Collins
,
V. N.
Gocharov
,
J. D.
Kress
,
R. L.
McCrory
, and
S.
Skupsky
, “
First-principles investigations on ionization and thermal conductivity of polystyrene for inertial confinement fusion applications
,”
Phys. Plasmas
23
,
042704
(
2016
).
86.
C. E.
Starrett
,
N. R.
Shaffer
,
D.
Saumon
,
R.
Perriot
,
T.
Nelson
,
L. A.
Collins
, and
C.
Ticknor
, “
Model for the electrical conductivity in dense plasma mixtures
,”
High Energy Density Phys.
36
,
100752
(
2020
).
87.
N. R.
Shaffer
and
C. A.
Starrett
, “
Model of electron transport in dense plasmas spanning temperature regimes
,”
Phys. Rev. E
101
,
053204
(
2020
).
88.
A.
Charakhch'yan
, “
Numerical investigation of deuterium implosion in a conical target
,”
J. Appl. Mech. Tech. Phys.
4
,
506
(
1994
), available at https://link.springer.com/article/10.1007/BF02369493.
89.
W. T.
Taitano
,
A. N.
Simakov
,
L.
Chacón
, and
B.
Keenan
, “
Yield degradation in inertial-confinement-fusion implosions due to shock-driven kinetic fuel-species stratification and viscous heating
,”
Phys. Plasmas
25
,
056310
(
2018
).
90.
K.
Molvig
,
N. M.
Hoffman
,
B. J.
Albright
,
E. M.
Nelson
, and
R. B.
Webster
, “
Knudsen layer reduction of fusion reactivity
,”
Phys. Rev. Lett.
109
,
095001
(
2012
).
91.
B. J.
Albright
,
K.
Molvig
,
C.-K.
Huang
,
A. N.
Simakov
,
E. S.
Dodd
,
N. M.
Hoffman
,
G.
Kagan
, and
P. F.
Schmit
, “
Revised Knudsen-layer reduction of fusion reactivity
,”
Phys. Plasmas
20
,
122705
(
2013
).
92.
G.
Kagan
,
D.
Svyatskiy
,
H. G.
Rinderknecht
,
M. J.
Rosenberg
,
A. B.
Zylstra
,
C.-K.
Huang
, and
C. J.
McDevitt
, “
Self-similar structure and experimental signatures of suprathermal ion distribution in inertial confinement fusion implosions
,”
Phys. Rev. Lett.
115
,
105002
(
2015
).
93.
J. M.
Ziman
, “
The electron transport properties of pure liquid metals
,”
Adv. Phys.
16
,
551
(
1967
).
You do not currently have access to this content.