The radial density profile of pre-thermal quench (pre-TQ) early-time non-thermal (hot) electrons is estimated by combining electron cyclotron emission and soft x-ray data during the rapid shutdown of low-density (ne1019m3) DIII-D target plasmas with cryogenic argon pellet injection. This technique is mostly limited in these experiments to the pre-TQ phase and quickly loses validity during the TQ. Two different cases are studied: a high (10 keV) temperature target and a low (4 keV) temperature target. The results indicate that early-time, low-energy (∼10 keV) hot electrons form ahead of the argon pellet as it enters the plasma, affecting the pellet ablation rate; it is hypothesized that this may be caused by rapid cross field transport of argon ions ahead of the pellet or by rapid cross field transport of hot electrons. Fokker–Planck modeling of the two shots suggests that the hot electron current is quite significant during the pre-TQ phase (up to 50% of the total current). Comparison between modeled pre-TQ hot electron current and post-TQ hot electron current inferred from avalanche theory suggests that hot electron current increases during the high-temperature target TQ but decreases during the low-temperature target TQ. The uncertainties in this estimate are large; however, if true, this suggests that TQ radial loss of hot electron current could be larger than previously estimated in DIII-D.

1.
M.
Lehnen
,
K.
Aleynikova
,
P. B.
Aleynikov
,
D. J.
Campbell
,
P.
Drewelow
,
N. W.
Eidietis
,
Y.
Gasparyan
,
R. S.
Granetz
,
Y.
Gribov
,
N.
Hartmann
,
E. M.
Hollmann
,
V. A.
Izzo
,
S.
Jachmich
,
S. H.
Kim
,
M.
Kocan
,
H. R.
Koslowski
,
D.
Kovalenko
,
U.
Kreuzi
,
A.
Loarte
,
S.
Maruyama
,
G. F.
Matthews
,
P. B.
Parks
,
G.
Pautasso
,
R. A.
Pitts
,
C.
Reux
,
V.
Riccardo
,
R.
Roccella
,
J. A.
Snipes
,
A. J.
Thornton
,
P. C.
de Vries
, and
EFDA JET Contributors,
J. Nucl. Mater.
463
,
39
(
2015
).
2.
E. M.
Hollmann
,
P. B.
Aleynikov
,
T.
Fülöp
,
D. A.
Humphreys
,
V. A.
Izzo
,
M.
Lehnen
,
V. E.
Lukash
,
G.
Papp
,
G.
Pautasso
,
F.
Saint-Laurent
, and
J. A.
Snipes
,
Phys. Plasmas
22
,
021802
(
2015
).
3.
H.
Knoepfel
and
D. A.
Spong
,
Nucl. Fusion
19
,
785
(
1979
).
4.
ITER Physics Expert Group on Disruptions, Plasma Control, and MHD
,
Nucl. Fusion
39
,
2251
(
1999
); available at http://iopscience.iop.org/0029-5515/39/12/303.
5.
T. C.
Hender
,
J. C.
Wesley
,
J.
Bialek
,
A.
Bondeson
,
A. H.
Boozer
,
R. J.
Buttery
,
A.
Garofalo
,
T. P.
Goodman
,
R. S.
Granetz
,
Y.
Gribov
 et al.,
Nucl. Fusion
47
,
S128
(
2007
).
6.
H. M.
Smith
and
E.
Verwichte
,
Phys. Plasmas
15
,
072502
(
2008
).
7.
B. N.
Breizman
,
P.
Aleynikov
,
E. M.
Hollmann
, and
M.
Lehnen
,
Nucl. Fusion
59
,
083001
(
2019
).
8.
V. A.
Izzo
,
D. A.
Humphreys
, and
M.
Kornbluth
,
Plasma Phys. Controlled Fusion
54
,
095002
(
2012
).
9.
C.
Sommariva
,
E.
Nardon
,
P.
Beyer
,
M.
Hoelzl
,
G. T. A.
Huijsmans
, and
JET Contributors,
Nucl. Fusion
58
,
106022
(
2018
).
10.
V. A.
Izzo
,
E. M.
Hollmann
,
A. N.
James
,
J. H.
Yu
,
D. A.
Humpreys
,
L. L.
Lao
,
P. B.
Parks
,
P. E.
Sieck
,
J. C.
Wesley
,
R. S.
Granetz
,
G. M.
Olynyk
, and
D. G.
Whyte
,
Nucl. Fusion
51
,
063032
(
2011
).
11.
E. M.
Hollmann
,
N.
Commaux
,
R. A.
Moyer
,
P. B.
Parks
,
M. E.
Austin
,
I.
Bykov
,
C.
Cooper
,
N. W.
Eidietis
,
M.
O'Mullane
,
C.
Paz-Soldan
,
D. L.
Rudakov
, and
D.
Shiraki
,
Nucl. Fusion
57
,
016008
(
2017
).
12.
C.
Paz-Soldan
,
P.
Aleynikov
,
E. M.
Hollmann
,
A.
Lvovskiy
,
I.
Bykov
,
X.
Du
,
N. W.
Eidietis
, and
D.
Shiraki
,
Nucl. Fusion
60
,
056020
(
2020
).
13.
A.
Lvovskiy
,
C.
Paz-Soldan
,
N. W.
Eidietis
,
A.
Dal Molin
,
X. D.
Du
,
L.
Giacomelli
,
J. L.
Herfindal
,
E. M.
Hollmann
,
L.
Martinelli
,
R. A.
Moyer
,
M.
Nocente
,
D.
Rigamonti
,
D.
Shiraki
,
M.
Tardocchi
, and
K. E.
Thome
,
Plasma Phys. Controlled Fusion
60
,
124003
(
2018
).
14.
M. N.
Rosenbluth
and
S. V.
Putvinski
,
Nucl. Fusion
37
,
1355
(
1997
).
15.
16.
A. N.
James
,
M. E.
Austin
,
N.
Commaux
,
N. W.
Eidietis
,
T. E.
Evans
,
E. M.
Hollmann
,
D. A.
Humphreys
,
A. W.
Hyatt
,
V. A.
Izzo
,
T. C.
Jernigan
,
R. J.
La Haye
,
P. B.
Parks
,
E. J.
Strait
,
G. R.
Tynan
,
J. C.
Wesley
, and
J. H.
Yu
,
Nucl. Fusion
52
,
013007
(
2012
).
17.
18.
M. E.
Austin
and
J.
Lohr
,
Rev. Sci. Instrum.
74
,
1457
(
2003
).
19.
E. M.
Hollmann
,
L.
Chousal
,
R. K.
Fisher
,
R.
Hernandez
,
G. L.
Jackson
,
M. J.
Lanctot
,
S. V.
Pidcoe
,
J.
Shankara
, and
D. A.
Taussig
,
Rev. Sci. Instrum.
82
,
113507
(
2011
).
20.
L.
Hesslow
,
O.
Embréus
,
O.
Vallhagen
, and
T.
Fülöp
,
Nucl. Fusion
59
,
084004
(
2019
).
21.
N.
Bosviel
,
P.
Parks
, and
R.
Samulyak
,
Phys. Plasmas
28
,
012506
(
2021
).
22.
F. L.
Hinton
and
C.
Oberman
,
Nucl. Fusion
9
,
319
(
1969
).
23.
O.
Sauter
,
C.
Angioni
, and
Y. R.
Liu-Liu
,
Phys. Plasmas
6
,
2834
(
1999
).
24.
J.
Wesson
and
D. J.
Campbell
,
Tokamaks
(
Oxford University Press
,
Oxford
,
2011
).
25.
M.
Landreman
,
A.
Stahl
, and
T.
Fülöp
,
Comput. Phys. Commun.
185
,
847
(
2014
).
26.
A.
Stahl
,
O.
Embreus
,
G.
Papp
,
M.
Landreman
, and
T.
Fülöp
,
Nucl. Fusion
56
,
112009
(
2016
).
27.
E. M.
Hollmann
,
T. C.
Jernigan
,
P. B.
Parks
,
J. A.
Boedo
,
T. E.
Evans
,
M.
Groth
,
D. A.
Humphreys
,
A. N.
James
,
M. J.
Lanctot
,
D.
Nishijima
,
D. L.
Rudakov
,
H. A.
Scott
,
E. J.
Strait
,
M. A.
Van Zeeland
,
J. C.
Wesley
,
W. P.
West
,
W.
Wu
, and
J. H.
Yu
,
Nucl. Fusion
48
,
115007
(
2008
).
28.
M.
Bornatici
,
R.
Cano
,
O. De
Barbieri
, and
F.
Engelmann
,
Nucl. Fusion
23
,
1153
(
1983
).
29.
M. E.
Austin
,
R. F.
Ellis
, and
T. C.
Luce
, “
Determination of wall reflectivity for ECE frequencies in DIII-D
,” in
Proceedings of the 10th ECE/ECRH Workshop, Ameland, Netherlands
(
World Scientific
,
1997
), p.
249
.
30.
31.
J. E.
Bailey
,
G. A.
Rochau
,
R. C.
Mancini
,
C. A.
Iglesias
,
J. J.
MacFarlane
,
I. E.
Golovkin
,
C.
Blancard
,
P.
Cosse
, and
G.
Faussurier
,
Phys. Plasmas
16
,
058101
(
2009
).
32.
P.
Parks
,
N.
Bosviel
, and
R.
Samulyak
, “
The ablation rate of light-element pellets with a kinetic treatment for penetration of plasma electrons through the ablation cloud
,”
Phys. Plasmas
(unpublished) (
2021
).
33.
P. B.
Parks
and
M. N.
Rosenbluth
,
Phys. Plasmas
5
,
1380
(
1998
).
34.
V. Y.
Sergeev
,
Plasma Phys. Rep.
32
,
363
(
2006
).
35.
D. I.
Kiramov
and
B. N.
Breizman
,
Nucl. Fusion
60
,
084004
(
2020
).
36.
A. B.
Rechester
and
M. N.
Rosenbluth
,
Phys. Rev. Lett.
40
,
38
(
1978
).
37.
J. A.
Wesson
,
R. D.
Gill
,
M.
Hugon
,
F. C.
Schuller
,
J. A.
Snipes
,
D. J.
Ward
,
D. V.
Bartlett
,
D. J.
Camplbell
,
P. A.
Duperrex
,
A. W.
Edwards
,
R. S.
Granetz
,
N. A. O.
Gottardi
,
T. C.
Hender
,
E.
Lazzaro
,
P. J.
Lomas
,
N.
Lopes Cardozo
,
K. F.
Mast
,
M. F. F.
Nave
,
N. A.
Salomon
,
P.
Smeulders
,
P. R.
Thomas
,
B. J. D.
Tubbing
,
M. F.
Turner
, and
A.
Weller
,
Nucl. Fusion
29
,
641
(
1989
).
38.
O.
Embreus
,
M.
Hoppe
, and
T.
Fülöp
, “
DREAM: A fluid-kinetic framework for tokamak disruption runaway electron simulations
,” arXiv:2103.16457 (
2021
).
39.
V. A.
Izzo
,
D. G.
Whyte
,
R. S.
Granetz
,
P. B.
Parks
,
E. M.
Hollmann
,
L. L.
Lao
, and
J. C.
Wesley
,
Phys. Plasmas
15
,
056109
(
2008
).
40.
E. M.
Hollmann
,
D.
Shiraki
,
L.
Baylor
,
I.
Bykov
,
N. W.
Eidietis
,
I.
Golovkin
,
J. L.
Herfindal
,
A.
Lvovskiy
,
A.
McLean
,
R. A.
Moyer
,
T.
O'Gorman
,
P. B.
Parks
, and
Z.
Popovic
,
Nucl. Fusion
61
,
016023
(
2021
).
41.
See https://fusion.gat.com/global/D3D_DMP for DIII-D Data Management Plan.
You do not currently have access to this content.