Perpendicular, magnetized, collisionless shocks in hydrogen and neon plasmas are studied with 2D particle-in-cell simulations for parameters accessible to experiments on OMEGA EP [Maywar et al., J. Phys.: Conf. Ser. 112, 032007 (2008)]. The simulations are performed with realistic ion-electron mass ratios by which the relative importance of different micro-instabilities can be accurately captured. The dispersion relation of the modified two-stream instability (MTSI), the main dissipation mechanism for these shocks, is used to find suitable parameters for upcoming experiments. Simulations show that magnetized collisionless shocks can be readily formed within a few tenths of an ion gyro-period in both hydrogen and neon gases, with a background magnetic field of 50 T, achievable using the magneto-inertial fusion electrical discharge system [Barnak et al., Rev. Sci. Instrum. 89, 033501 (2018)]. A portion of the ions are reflected to the upstream region and accelerated in both shock normal and tangential directions, indicating the formation of a supercritical shock. Shock front reformation is seen in longer time 1D simulations. The results show that the formation time and width of these shocks are determined by MTSI.

1.
R.
Drake
, “
The design of laboratory experiments to produce collisionless shocks of cosmic relevance
,”
Phys. Plasmas
7
,
4690
4698
(
2000
).
2.
N.
Woolsey
,
Y. A.
Ali
,
R.
Evans
,
R.
Grundy
,
S.
Pestehe
,
P.
Carolan
,
N.
Conway
,
R.
Dendy
,
P.
Helander
,
K.
McClements
 et al., “
Collisionless shock and supernova remnant simulations on vulcan
,”
Phys. Plasmas
8
,
2439
2445
(
2001
).
3.
D.
Schaeffer
,
E.
Everson
,
D.
Winske
,
C.
Constantin
,
A.
Bondarenko
,
L.
Morton
,
K.
Flippo
,
D.
Montgomery
,
S.
Gaillard
, and
C.
Niemann
, “
Generation of magnetized collisionless shocks by a novel, laser-driven magnetic piston
,”
Phys. Plasmas
19
,
070702
(
2012
).
4.
D.
Schaeffer
,
D.
Winske
,
D.
Larson
,
M.
Cowee
,
C.
Constantin
,
A.
Bondarenko
,
S.
Clark
, and
C.
Niemann
, “
On the generation of magnetized collisionless shocks in the large plasma device
,”
Phys. Plasmas
24
,
041405
(
2017
).
5.
D. B.
Schaeffer
,
W.
Fox
,
R.
Follett
,
G.
Fiksel
,
C.
Li
,
J.
Matteucci
,
A.
Bhattacharjee
, and
K.
Germaschewski
, “
Direct observations of particle dynamics in magnetized collisionless shock precursors in laser-produced plasmas
,”
Phys. Rev. Lett.
122
,
245001
(
2019
).
6.
C.
Niemann
,
W.
Gekelman
,
C.
Constantin
,
E.
Everson
,
D.
Schaeffer
,
A.
Bondarenko
,
S.
Clark
,
D.
Winske
,
S.
Vincena
,
B.
Van Compernolle
 et al., “
Observation of collisionless shocks in a large current-free laboratory plasma
,”
Geophys. Res. Lett.
41
,
7413
7418
, (
2014
).
7.
S. P.
Gary
and
S. P.
Gary
,
Theory of Space Plasma Microinstabilities
(
Cambridge university Press
,
1993
), Vol.
7
.
8.
J. B.
McBride
,
E.
Ott
,
J. P.
Boris
, and
J. H.
Orens
, “
Theory and simulation of turbulent heating by the modified two-stream instability
,”
Phys. Fluids
15
,
2367
2383
(
1972
).
9.
C.
Wu
,
Y.
Zhou
,
S.-T.
Tsai
,
S.
Guo
,
D.
Winske
, and
K.
Papadopoulos
, “
A kinetic cross-field streaming instability
,”
Phys. Fluids
26
,
1259
1267
(
1983
).
10.
C.
Wu
,
D.
Winske
,
Y.
Zhou
,
S.
Tsai
,
P.
Rodriguez
,
M.
Tanaka
,
K.
Papadopoulos
,
K.
Akimoto
,
C.
Lin
,
M.
Leroy
 et al., “
Microinstabilities associated with a high Mach number, perpendicular bow shock
,”
Space Sci. Rev.
37
,
63
109
(
1984
).
11.
D.
Winske
,
J.
Giacalone
,
M.
Thomsen
, and
M.
Mellott
, “
A comparative study of plasma heating by ion acoustic and modified two-stream instabilities at subcritical quasi-perpendicular shocks
,”
J. Geophys. Res.
92
,
4411
4422
, (
1987
).
12.
S.
Matsukiyo
and
M.
Scholer
, “
Modified two-stream instability in the foot of high Mach number quasi-perpendicular shocks
,”
J. Geophys. Res.
108
,
1459
, (
2003
).
13.
S.
Matsukiyo
and
M.
Scholer
, “
On microinstabilities in the foot of high Mach number perpendicular shocks
,”
J. Geophys. Res.
111
,
A06104
, (
2006
).
14.
J.
Park
,
J. C.
Workman
,
E. G.
Blackman
,
C.
Ren
, and
R.
Siller
, “
Particle-in-cell simulations of particle energization from low Mach number fast mode shocks
,”
Phys. Plasmas
19
,
062904
(
2012
).
15.
J.
Park
,
C.
Ren
,
J. C.
Workman
, and
E. G.
Blackman
, “
Particle-in-cell simulations of particle energization via shock drift acceleration from low Mach number quasi-perpendicular shocks in solar flares
,”
Astrophys. J.
765
,
147
(
2013
).
16.
M.
Scholer
and
S.
Matsukiyo
, “
Nonstationarity of quasi-perpendicular shocks: A comparison of full particle simulations with different ion to electron mass ratio
,”
Ann. Geophys.
22
,
2345
2353
(
2004
).
17.
T.
Umeda
,
R.
Yamazaki
,
Y.
Ohira
,
N.
Ishizaka
,
S.
Kakuchi
,
Y.
Kuramitsu
,
S.
Matsukiyo
,
I.
Miyata
,
T.
Morita
,
Y.
Sakawa
 et al., “
Full particle-in-cell simulation of the interaction between two plasmas for laboratory experiments on the generation of magnetized collisionless shocks with high-power lasers
,”
Phys. Plasmas
26
,
032303
(
2019
).
18.
D.
Schaeffer
,
W.
Fox
,
J.
Matteucci
,
K.
Lezhnin
,
A.
Bhattacharjee
, and
K.
Germaschewski
, “
Kinetic simulations of piston-driven collisionless shock formation in magnetized laboratory plasmas
,”
Phys. Plasmas
27
,
042901
(
2020
).
19.
D.
Maywar
,
J.
Kelly
,
L.
Waxer
,
S.
Morse
,
I.
Begishev
,
J.
Bromage
,
C.
Dorrer
,
J.
Edwards
,
L.
Folnsbee
,
M.
Guardalben
 et al., “
OMEGA EP high-energy petawatt laser: Progress and prospects
,”
J. Phys.: Conf. Ser.
112
,
032007
(
2008
).
20.
J.
Kelly
,
L.
Waxer
,
V.
Bagnoud
,
I.
Begishev
,
J.
Bromage
,
B.
Kruschwitz
,
T.
Kessler
,
S.
Loucks
,
D.
Maywar
,
R.
McCrory
 et al., “
Omega ep: High-energy petawatt capability for the omega laser facility
,”
J. Phys. IV
133
,
75
80
(
2006
).
21.
L.
Waxer
,
D.
Maywar
,
J.
Kelly
,
T.
Kessler
,
B.
Kruschwitz
,
S.
Loucks
,
R.
McCrory
,
D.
Meyerhofer
,
S.
Morse
,
C.
Stoeckl
 et al., “
Opt. Photonics News
16
,
30
(
2005
).”
22.
D.
Barnak
,
J.
Davies
,
G.
Fiksel
,
P.-Y.
Chang
,
E.
Zabir
, and
R.
Betti
, “
Increasing the magnetic-field capability of the magneto-inertial fusion electrical discharge system using an inductively coupled coil
,”
Rev. Sci. Instrum.
89
,
033501
(
2018
).
23.
G.
Fiksel
,
A.
Agliata
,
D.
Barnak
,
G.
Brent
,
P.-Y.
Chang
,
L.
Folnsbee
,
G.
Gates
,
D.
Hasset
,
D.
Lonobile
,
J.
Magoon
 et al., “
Note: Experimental platform for magnetized high-energy-density plasma studies at the omega laser facility
,”
Rev. Sci. Instrum.
86
,
016105
(
2015
).
24.
G.
Fiksel
,
R.
Backhus
,
D.
Barnak
,
P.-Y.
Chang
,
J.
Davies
,
D.
Jacobs-Perkins
,
P.
McNally
,
R.
Spielman
,
E.
Viges
, and
R.
Betti
, “
Inductively coupled 30 t magnetic field platform for magnetized high-energy-density plasma studies
,”
Rev. Sci. Instrum.
89
,
084703
(
2018
).
25.
G.
Mann
,
H.
Aurass
, and
A.
Warmuth
, “
Electron acceleration by the reconnection outflow shock during solar flares
,”
Astron. Astrophys.
454
,
969
974
(
2006
).
26.
K.
Lezhnin
,
W.
Fox
,
D.
Schaeffer
,
A.
Spitkovsky
,
J.
Matteucci
,
A.
Bhattacharjee
, and
K.
Germaschewski
, “
Kinetic simulations of electron pre-energization by magnetized collisionless shocks in expanding laboratory plasmas
,”
Astrophys. J. Lett.
908
,
L52
(
2021
).
27.
Y.
Kuramitsu
,
Y.
Sakawa
,
T.
Morita
,
C.
Gregory
,
J.
Waugh
,
S.
Dono
,
H.
Aoki
,
H.
Tanji
,
M.
Koenig
,
N.
Woolsey
 et al., “
Time evolution of collisionless shock in counterstreaming laser-produced plasmas
,”
Phys. Rev. Lett.
106
,
175002
(
2011
).
28.
F.
Fiuza
,
G.
Swadling
,
A.
Grassi
,
H.
Rinderknecht
,
D.
Higginson
,
D.
Ryutov
,
C.
Bruulsema
,
R.
Drake
,
S.
Funk
,
S.
Glenzer
 et al., “
Electron acceleration in laboratory-produced turbulent collisionless shocks
,”
Nat. Phys.
16
,
916
920
(
2020
).
29.
M. M.
Marinak
,
G.
Kerbel
,
N.
Gentile
,
O.
Jones
,
D.
Munro
,
S.
Pollaine
,
T.
Dittrich
, and
S.
Haan
, “
Three-dimensional hydra simulations of national ignition facility targets
,”
Phys. Plasmas
8
,
2275
2280
(
2001
).
30.
L.
Spitzer
,
Physics of Fully Ionized Gases
(
Courier Corporation
,
2006
).
31.
R. A.
Fonseca
,
L. O.
Silva
,
F. S.
Tsung
,
V. K.
Decyk
,
W.
Lu
,
C.
Ren
,
W. B.
Mori
,
S.
Deng
,
S.
Lee
,
T.
Katsouleas
 et al., “
Osiris: A three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators
,” in
International Conference on Computational Science
(
Springer
,
2002
), pp.
342
351
.
32.
D.
Burgess
and
M.
Scholer
,
Collisionless Shocks in Space Plasmas: Structure and Accelerated Particles
(
Cambridge University Press
,
2015
).
33.
R.
Treumann
, “
Fundamentals of collisionless shocks for astrophysical application, 1. Non-relativistic shocks
,”
Astron. Astrophys. Rev.
17
,
409
535
(
2009
).
34.
E. S.
Weibel
, “
Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution
,”
Phys. Rev. Lett.
2
,
83
(
1959
).
35.
C.
Huntington
,
F.
Fiuza
,
J.
Ross
,
A.
Zylstra
,
R.
Drake
,
D.
Froula
,
G.
Gregori
,
N.
Kugland
,
C.
Kuranz
,
M.
Levy
 et al., “
Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows
,”
Nat. Phys.
11
,
173
176
(
2015
).
36.
F. F.
Chen
,
Introduction to Plasma Physics and Controlled Fusion
(
Springer
,
2016
).
37.
M.
Liu
,
S.
Weng
,
Y.
Li
,
D.
Yuan
,
M.
Chen
,
P.
Mulser
,
Z.
Sheng
,
M.
Murakami
,
L.
Yu
,
X.
Zheng
 et al., “
Collisionless electrostatic shock formation and ion acceleration in intense laser interactions with near critical density plasmas
,”
Phys. Plasmas
23
,
113103
(
2016
).
38.
L. O.
Silva
,
M.
Marti
,
J. R.
Davies
,
R. A.
Fonseca
,
C.
Ren
,
F. S.
Tsung
, and
W. B.
Mori
, “
Proton shock acceleration in laser-plasma interactions
,”
Phys. Rev. Lett.
92
,
015002
(
2004
).
39.
D.
Biskamp
and
H.
Welter
, “
Numerical studies of magnetosonic collisionless shock waves
,”
Nucl. Fusion
12
,
663
(
1972
).
40.
K. B.
Quest
, “
Simulations of high-Mach-number collisionless perpendicular shocks in astrophysical plasmas
,”
Phys. Rev. Lett.
54
,
1872
(
1985
).
41.
P.
Hellinger
,
P.
Travnicek
, and
H.
Matsumoto
, “
Reformation of perpendicular shocks: Hybrid simulations
,”
Geophys. Res. Lett.
29
,
87-1
87-4
, (
2002
).
42.
T.
Umeda
,
Y.
Kidani
,
M.
Yamao
,
S.
Matsukiyo
, and
R.
Yamazaki
, “
On the reformation at quasi-and exactly perpendicular shocks: Full particle-in-cell simulations
,”
J. Geophys. Res.
115
,
A10250
, (
2010
).
43.
M.
May
,
R.
Heeter
, and
J.
Emig
, “
Convex crystal x-ray spectrometer for laser plasma experiments
,”
Rev. Sci. Instrum.
75
,
3740
3742
(
2004
).
44.
R.
Heeter
,
J.
Emig
,
K.
Fournier
,
S.
Hansen
,
M.
May
, and
B.
Young
, “
X-ray spectroscopy with elliptical crystals and face-on framing cameras
,”
Rev. Sci. Instrum.
75
,
3762
3764
(
2004
).
45.
R.
Marrs
,
G.
Brown
,
J.
Emig
, and
R.
Heeter
, “
System for calibrating the energy-dependent response of an elliptical Bragg-crystal spectrometer
,”
Rev. Sci. Instrum.
85
,
11D626
(
2014
).
46.
D.
Tidman
and
N.
Krall
,
Shock Waves in Collisionless Plasmas.
(
Wiley-Interscience
,
1971
).
47.
A.
Bohdan
,
J.
Niemiec
,
O.
Kobzar
, and
M.
Pohl
, “
Electron pre-acceleration at nonrelativistic high-Mach-number perpendicular shocks
,”
Astrophys. J.
847
,
71
(
2017
).
You do not currently have access to this content.