Underwater electrical explosion experiments of cylindrical or conical wire arrays accompanied by the generation of fast (up to ∼4500 m/s) water jets are presented. In these experiments, a pulse generator with a stored energy of up to ∼5.7 kJ, current amplitude of up to ∼340 kA, and rise time of ∼0.85 μs was used to electrically explode copper and aluminum wire arrays underwater. Streak and fast framing shadow imaging was used to extract the space–time resolved velocity of the ejected jet from the array while it propagates in air. The jet generation occurs due to high pressure and density of water formed in the vicinity of the array axis by the imploding shockwave. It was shown that the velocity of the jet ejected from the array depends on the array geometry and the thickness of the water layer above the array. The results suggest that ≥50% of the energy deposited into the array is transferred to the kinetic energy of this jet and the axial waterflow.

1.
V. E.
Fortov
and
I. T.
Iakubov
,
The Physics of Non-Ideal Plasma
(
World Scientific
,
Singapore
,
2000
).
2.
R. P.
Drake
,
High-Energy-Density Physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics
(
Springer-Verlag
,
Berlin/Heidelberg
,
2006
).
3.
J.
Larsen
,
Foundations of High-Energy-Density Physics: Physical Processes of Matter at Extreme Conditions
(
Cambridge University Press
,
2017
).
4.
S. V.
Lebedev
,
A.
Frank
, and
D. D.
Rutov
, “
Exploring astrophysics-relevant magnetohydrodynamics with pulsed-power laboratory facilities
,”
Rev. Mod. Phys.
91
,
025002
(
2019
).
5.
D. B.
Sinars
,
M. A.
Sweeney
,
C. S.
Alexander
,
D. J.
Ampleford
,
T.
Ao
,
J. P.
Apruzese
,
C.
Aragon
,
D. J.
Armstrong
,
K. N.
Austin
,
T. J.
Awe
 et al.,
Phys. Plasmas
27
,
070501
(
2020
).
6.
L. G.
Suttle
,
G. C.
Burdiak
,
C. L.
Cheung
,
T.
Clayson
,
J. W. D.
Halliday
,
J. D.
Hare
,
S.
Rusli
,
D. R.
Russell
,
E. R.
Tubman
,
A.
Ciardi
 et al.,
Plasma Phys. Controlled Fusion
62
,
014020
(
2020
).
7.
A. C.
Hayes
,
M. E.
Gooden
,
E.
Henry
,
G.
Jungman
,
J. B.
Wilhelmy
,
R. S.
Rundberg
,
C.
Yeamans
,
G.
Kyrala
,
C.
Cerjan
,
D. L.
Danielson
 et al.,
Nat. Phys.
16
,
432
(
2020
).
8.
L. C.
Chhabildas
,
L. M.
Barker
,
J. R.
Asay
,
T. G.
Trucano
,
G. I.
Kerley
, and
J. E.
Dunn
, “
Launch capabilities to over 10 km/s
,” in
1991 Proceedings of the APS Topical Conference
, Williamsburg, VA (
Elsevier
,
1992
), pp.
1025
1031
.
9.
B. Yu.
Sharkov
,
D. H. H.
Hoffmann
,
A. A.
Golubev
, and
Y.
Zhao
,
Matter Radiat. Extremes
1
,
28
(
2016
).
10.
Y. E.
Krasik
,
A.
Grinenko
,
A.
Sayapin
,
S.
Efimov
,
A.
Fedotov
,
V. Z.
Gurovich
, and
V. I.
Oreshkin
,
IEEE Trans. Plasma Sci.
36
,
423
(
2008
).
11.
Y. E.
Krasik
,
S.
Efimov
,
D.
Sheftman
, and
A.
Fedotov-Gefen
,
IEEE Trans. Plasma Sci.
44
,
412
(
2016
).
12.
A.
Grinenko
,
S.
Efimov
,
A.
Fedotov
,
Y. E.
Krasik
, and
I.
Schnitzer
,
J. Appl. Phys.
100
,
113509
(
2006
).
13.
S.
Efimov
,
V. T.
Gurovich
,
G.
Bazalitski
,
A.
Fedotov
, and
Y. E.
Krasik
,
J. Appl. Phys.
106
,
073308
(
2009
).
14.
A.
Fedotov Gefen
,
S.
Efimov
,
L.
Gilburd
,
G.
Bazilitski
,
V. T.
Gurovich
, and
Y. E.
Krasik
,
Phys. Plasma
18
,
062701
(
2011
).
15.
O.
Antonov
,
L.
Gilburd
,
S.
Efimov
,
G.
Bazalitski
,
V. T.
Gurovich
, and
Y. E.
Krasik
,
Phys. Plasmas
19
,
102702
(
2012
).
16.
R. H.
Cole
,
Underwater Explosions
(
Princeton University Press
,
1948
).
17.
W. P.
Walters
and
J. A.
Zukas
,
Fundamentals of Shaped Charges
(
John Wiley & Sons, Inc.
,
1989
).
18.
V. K.
Kedrinskii
,
Hydrodynamics of Explosion: Experiments and Models
(
Springer-Verlag
,
Berlin/Heidelberg
,
2005
).
19.
D.
Shafer
,
V. T.
Gurovich
,
D.
Yanuka
,
E.
Zvulun
,
S.
Gleizer
,
G.
Toker
, and
Y. E.
Krasik
,
J. Appl. Phys.
117
,
015901
(
2015
).
20.
S.
Efimov
,
A.
Fedotov
,
S.
Gleizer
,
V. T.
Gurovich
,
G.
Bazilitski
, and
Y. E.
Krasik
,
Phys. Plasmas
15
,
112703
(
2008
).
21.
L.
Gilburd
,
S.
Efimov
,
A.
Fedotov-Gefen
,
V. T.
Gurovich
,
G.
Bazalitzky
,
O.
Antonov
, and
Y. E.
Krasik
,
Laser Part. Beams
30
,
215
(
2012
).
22.
A.
Rososhek
,
S.
Efimov
,
A.
Goldman
,
S. V.
Tewari
, and
Y. E.
Krasik
,
Phys. Plasmas
26
,
053510
(
2019
).
23.
A.
Rososhek
,
S.
Efimov
,
A.
Virozub
,
D.
Maler
, and
Y. E.
Krasik
,
Appl. Phys. Lett.
115
,
074101
(
2019
).
24.
T. B.
Gatski
and
J. P.
Bonnet
,
Compressibility, Turbulence and High Speed Flow
(
Academic Press
,
2013
), pp.
169
230
.
25.
D.
Yanuka
,
A.
Rososhek
, and
Y. E.
Krasik
,
Phys. Plasmas
24
,
053512
(
2017
).
26.
A.
Rososhek
,
S.
Efimov
,
M.
Nitishinski
,
D.
Yanuka
,
S. V.
Tewari
,
V. T.
Gurovich
,
K.
Khishchenko
, and
Y. E.
Krasik
,
Phys. Plasmas
24
,
122705
(
2017
).
27.
L.
Rayleigh
, “
VIII. On the pressure developed in a liquid during the collapse of a spherical cavity
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
34
,
94
(
1917
).
28.
J. R.
Blake
and
D. C.
Gibson
,
Annu. Rev. Fluid Mech.
19
,
99
(
1987
).
29.
O. V.
Voinov
and
V. V.
Voinov
,
Sov. Phys. Dokl.
20
,
179
(
1975
).
30.
T.
Li
,
A.-M.
Zhang
,
S.-P.
Wang
,
S.
Li
, and
W.-T.
Liu
,
Phys. Fluids
31
,
042104
(
2019
).
31.
S. V.
Lebedev
,
A.
Ciardi
,
D. J.
Ampleford
,
S. N.
Bland
,
S. C.
Bott
,
J. P.
Chittenden
,
G. N.
Hall
,
J.
Rapley
,
C.
Jennings
,
M.
Sherlock
,
A.
Frank
, and
E. G.
Blackman
,
Plasma Phys. Controlled Fusion
47
,
B465
(
2005
).
32.
G.
Birkhoff
,
D. P.
MacDougall
,
E. M.
Pugh
, and
S. G.
Taylor
,
J. Appl. Phys.
19
,
563
(
1948
).
33.
M. A.
Lavrentyev
,
Achiev. Math.
12
,
41
(
1957
).
34.
A. I.
Rylov
,
Prikl. Mat. Mekh.
54
,
201
(
1990
).
35.
H. G.
Hornung
,
J. Fluid Mech.
409
,
1
(
2000
).
36.
D.
Yanuka
,
A.
Rososhek
,
S.
Theocharous
,
S. N.
Bland
,
Y. E.
Krasik
,
M. P.
Olbinado
, and
A.
Rack
,
J. Appl. Phys.
124
,
153301
(
2018
).
37.
D.
Yanuka
,
S.
Theocharous
,
S.
Efimov
,
S. N.
Bland
,
A.
Rososhek
,
Y. E.
Krasik
,
M. P.
Olbinado
, and
A.
Rack
,
J. Appl. Phys.
125
,
093301
(
2019
).
38.
V. M.
Bystritsky
,
V. M.
Grebenyuk
,
S. S.
Parzhitski
,
F. M.
Pen'kov
,
V. T.
Sidorov
,
V. A.
Stolupin
,
T. L.
Bulgakov
,
G. A.
Mesyats
,
A. A.
Sinebryukhov
, and
V. A.
Sinebryukhov
,
Laser Part. Beams
18
,
325
(
2000
).
You do not currently have access to this content.