Underwater electrical explosion experiments of cylindrical or conical wire arrays accompanied by the generation of fast (up to ∼4500 m/s) water jets are presented. In these experiments, a pulse generator with a stored energy of up to ∼5.7 kJ, current amplitude of up to ∼340 kA, and rise time of ∼0.85 μs was used to electrically explode copper and aluminum wire arrays underwater. Streak and fast framing shadow imaging was used to extract the space–time resolved velocity of the ejected jet from the array while it propagates in air. The jet generation occurs due to high pressure and density of water formed in the vicinity of the array axis by the imploding shockwave. It was shown that the velocity of the jet ejected from the array depends on the array geometry and the thickness of the water layer above the array. The results suggest that ≥50% of the energy deposited into the array is transferred to the kinetic energy of this jet and the axial waterflow.

You do not currently have access to this content.