Great efforts have been made to create a bright K-shell source using the thin metal cylindrical cavities in the past few decades. Several metal materials such as titanium (Ti), iron, and so on have been tested for high x-ray conversion efficiency mainly at the OMEGA and NIF laser facilities. Recently, x-ray sources in Ti K-shell transition energy range were investigated at the Shenguang-III prototype laser facility with ∼5 kJ laser energy. The experiments were aimed to reproduce the previous ones at OMEGA, but with an extraordinarily small volume of cylindrical cavity and detailed characterizations of the x-ray source. The cavities were 800 μm inner diameter, 800 μm length, and 30 μm thick plastic tubes supporting 1 μm thick Ti. Seven laser beams were focused to 200 μm diameter. The combination of the small cavity volume and the focused laser spots is intended to improve the electron temperature with limited laser energy since the electron temperature is a key issue for high x-ray conversion efficiency. Thomson scattering was adopted to experimentally probe the electron temperatures at special time and space zones as well as the average temperature obtained from the Ti K-shell spectrum. The evolutions of the electron temperature and density are predicted by the radiation hydrodynamic simulation. A top view and two photon energy bands of x-ray source images provide a way to directly observe the plasma movement toward the cavity axis and distinguish the different emission mechanisms between the Ti K-shell and lower energy x rays. Six Higher-energy x-ray detectors located at different angles were used to record the Ti K-shell x-ray emission and demonstrate its isotropic feature. The characteristics of the x-ray radiate intensity including the time evolution, the angular distribution, and the total yields for both the photon energy regions above and below 4 keV are compared between the cavity and planar targets. Obviously, different behaviors were found between the two photon energy regions and the two types of targets. The x-ray conversion efficiency of the Ti cylinder was determined to be 4% and 21% in 4π sr in the Ti K-shell (4–7 keV) and <4 keV range, respectively. The Ti K-shell conversion efficiency obtained in the present experiments is between the ones driven by 13.5 and 4.5 kJ laser energy at OMEGA.

1.
J. D.
Lindl
,
P.
Amendt
,
R. L.
Berger
,
S. G.
Glendinning
,
S. H.
Glenzer
,
S. W. H.
Robert
, and
S. J.
Laurence
, “
The physics basis for ignition using indirect-drive targets on the national ignition facility
,”
Phys. Plasmas
11
,
339
491
(
2004
).
2.
D. B.
Sinars
,
M. A.
Sweeney
,
C. S.
Alexander
,
D. J.
Ampleford
,
T.
Ao
,
J. P.
Apruzese
,
C.
Aragon
,
D. J.
Armstrong
,
K. N.
Austin
,
T. J.
Awe
,
A. D.
Baczewski
,
J. E.
Bailey
,
K. L.
Baker
,
C. R.
Ball
,
H. T.
Barclay
,
S.
Beatty
,
K.
Beckwith
,
K. S.
Bell
,
J. F.
Benage
,
N. L.
Bennett
,
K.
Blaha
,
D. E.
Bliss
,
J. J.
Boerner
,
C. J.
Bourdon
,
B. A.
Branch
,
J. L.
Brown
,
E. M.
Campbell
,
R. B.
Campbell
,
D. G.
Chacon
,
G. A.
Chandler
,
K.
Chandler
,
P. J.
Christenson
,
M. D.
Christison
,
E. B.
Christner
,
R. C.
Clay
,
K. R.
Cochrane
,
A. P.
Colombo
,
B. M.
Cook
,
C. A.
Coverdale
,
M. E.
Cuneo
,
J. S.
Custer
,
A.
Dasgupta
,
J.-P.
Davis
,
M. P.
Desjarlais
,
D. H.
Dolan
,
J. D.
Douglass
,
G. S.
Dunham
,
S.
Duwal
,
A. D.
Edens
,
M. J.
Edwards
,
E. G.
Evstatiev
,
B. G.
Farfan
,
J. R.
Fein
,
E. S.
Field
,
J. A.
Fisher
,
T. M.
Flanagan
,
D. G.
Flicker
,
M. D.
Furnish
,
B. R.
Galloway
,
P. D.
Gard
,
T. A.
Gardiner
,
M.
Geissel
,
J. L.
Giuliani
,
M. E.
Glinsky
,
M. R.
Gomez
,
T.
Gomez
,
G. P.
Grim
,
K. D.
Hahn
,
T. A.
Haill
,
N. D.
Hamlin
,
J. H.
Hammer
,
S. B.
Hansen
,
H. L.
Hanshaw
,
E. C.
Harding
,
A. J.
Harvey-Thompson
,
D.
Headley
,
M. C.
Herrmann
,
M. H.
Hess
,
C.
Highstrete
,
O. A.
Hurricane
,
B. T.
Hutsel
,
C. A.
Jennings
,
O. M.
Johns
,
D.
Johnson
,
M. D.
Johnston
,
B. M.
Jones
,
M. C.
Jones
,
P. A.
Jones
,
P. E.
Kalita
,
R. J.
Kamm
,
J. W.
Kellogg
,
M. L.
Kiefer
,
M. W.
Kimmel
,
P. F.
Knapp
,
M. D.
Knudson
,
A.
Kreft
,
G. R.
Laity
,
P. W.
Lake
,
D. C.
Lamppa
,
W. L.
Langston
,
J. S.
Lash
,
K. R.
LeChien
,
J. J.
Leckbee
,
R. J.
Leeper
,
G. T.
Leifeste
,
R. W.
Lemke
,
W.
Lewis
,
S. A.
Lewis
,
G. P.
Loisel
,
Q. M.
Looker
,
A. J.
Lopez
,
D. J.
Lucero
,
S. A.
MacLaren
,
R. J.
Magyar
,
M. A.
Mangan
,
M. R.
Martin
,
T. R.
Mattsson
,
M. K.
Matzen
,
A. J.
Maurer
,
M. G.
Mazarakis
,
R. D.
McBride
,
H. S.
McLean
,
C. A.
McCoy
,
G. R.
McKee
,
J. L.
McKenney
,
A. R.
Miles
,
J. A.
Mills
,
M. D.
Mitchell
,
N. W.
Moore
,
C. E.
Myers
,
T.
Nagayama
,
G.
Natoni
,
A. C.
Owen
,
S.
Patel
,
K. J.
Peterson
,
T. D.
Pointon
,
J. L.
Porter
,
A. J.
Porwitzky
,
S.
Radovich
,
K. S.
Raman
,
P. K.
Rambo
,
W. D.
Reinhart
,
G. K.
Robertson
,
G. A.
Rochau
,
S.
Root
,
D. V.
Rose
,
D. C.
Rovang
,
C. L.
Ruiz
,
D. E.
Ruiz
,
D.
Sandoval
,
M. E.
Savage
,
M. E.
Sceiford
,
M. A.
Schaeuble
,
P. F.
Schmit
,
M. S.
Schollmeier
,
J.
Schwarz
,
C. T.
Seagle
,
A. B.
Sefkow
,
D. B.
Seidel
,
G. A.
Shipley
,
J.
Shores
,
L.
Shulenburger
,
S. C.
Simpson
,
S. A.
Slutz
,
I. C.
Smith
,
C. S.
Speas
,
P. E.
Specht
,
M. J.
Speir
,
D. C.
Spencer
,
P. T.
Springer
,
A. M.
Steiner
,
B. S.
Stoltzfus
,
W. A.
Stygar
,
J. W.
Thornhill
,
J. A.
Torres
,
J. P.
Townsend
,
C.
Tyler
,
R. A.
Vesey
,
P. E.
Wakeland
,
T. J.
Webb
,
E. A.
Weinbrecht
,
M. R.
Weis
,
D. R.
Welch
,
J. L.
Wise
,
M.
Wu
,
D. A.
Yager-Elorriaga
,
A.
Yu
, and
E. P.
Yu
, “
Review of pulsed power-driven high energy density physics research on Z at Sandia
,”
Phys. Plasmas
27
,
070501
(
2020
).
3.
H. S.
Park
,
B. R. Maddox, M. H.
Key
,
S. L.
Pape
,
A. J.
MacKinnon
,
A. G.
MacPhee
,
P. K.
Patel
,
T. W.
Phillips
,
B. A.
Remington
,
J. F.
Seely
,
R.
Tommasini
,
R.
Town
,
J.
Workman
, and
E.
Brambrink
, “
High-resolution 17–75 keV backlighters for high energy density experiments
,”
Phys. Plasmas
15
,
072705
(
2008
).
4.
C. A.
Coverdale
,
B.
Jones
,
D. J.
Ampleford
,
J.
Chittenden
,
C.
Jennings
,
J. W.
Thornhill
,
J. P.
Apruzese
,
R. W.
Clark
,
K. G.
Whitney
,
A.
Dasgupta
,
J.
Davis
,
J.
Guiliani
,
P. D.
LePell
,
C.
Deeney
,
D. B.
Sinars
, and
M. E.
Cuneo
, “
K-shell x-ray sources at the Z accelerator
,”
High Energy Density Phys.
6
,
143
(
2010
).
5.
K. B.
Fournier
,
J.
Celeste
,
V.
Rekow
,
D. R.
Bopp
,
M. J.
May
,
J. H.
Fisher
,
R.
Horton
,
C. D.
Newler
,
P.
Jenkins
, and
K.
Trautz
, “
A test cassette for x-ray-exposure experiments at the National Ignition Facility
,”
Rev. Sci. Instrum.
81
,
075113
(
2010
).
6.
C. A.
Back
,
J.
Grun
,
C.
Decker
,
L. J.
Suter
,
J.
Davis
,
O. L.
Landen
,
R.
Wallace
,
W. W.
Hsing
,
J. M.
Laming
,
U.
Feldman
,
M. C.
Miller
, and
C.
Wuest
, “
Efficient multi-keV underdense laser-produced plasma radiators
,”
Phys. Rev. Lett.
87
,
275003
(
2001
).
7.
C. A.
Back
,
J.
Davis
,
J.
Grun
,
L. J.
Suter
,
O. L.
Landen
,
W. W.
Hsing
, and
M. C.
Miller
, “
Multi-keV x-ray conversion efficiency in laser-produced plasmas
,”
Phys. Plasmas
10
,
2047
(
2003
).
8.
K. B.
Fournier
,
C.
Constantin
,
C. A.
Back
,
L.
Suter
,
H. K.
Chung
,
M. C.
Miller
,
D. H.
Froula
,
G.
Gregori
,
S. H.
Glenzer
,
E. L.
Dewald
, and
O. L.
Landen
, “
Electron-density scaling of conversion efficiency of laser energy into L-shell x-rays
,”
J. Quant. Spectrosc. Radiat. Transfer
99
,
186
198
(
2006
).
9.
K. B.
Fournier
,
M. J.
May
,
J. D.
Colvin
,
J. O.
Kane
,
M.
Schneider
,
E.
Dewald
,
C. A.
Thomas
,
S.
Compton
,
R. E.
Marrs
,
J.
Moody
,
E.
Bond
,
P.
Michel
,
J. H.
Fisher
,
C. D.
Newlander
, and
J. F.
Davis
, “
Multi-keV x-ray source development experiments on the National Ignition Facility
,”
Phys. Plasmas
17
,
082701
(
2010
).
10.
J. D.
Colvin
,
K. B.
Fournier
,
J.
Kane
,
S.
Langer
,
M. J.
May
, and
H. A.
Scott
, “
A computational study of x-ray emission from high-Z x-ray sources on the National Ignition Facility laser
,”
High Energy Density Phys.
7
,
263
270
(
2011
).
11.
K. B.
Fournier
,
M. J.
May
,
J. D.
Colvin
,
M. A.
Barrios
,
J. R.
Patterson
, and
S. P.
Regan
, “
Demonstration of a 13-keV Kr K-shell x-ray source at the National Ignition Facility
,”
Phys. Rev. E
88
,
033104
(
2013
).
12.
M. J.
May
,
Y. P.
Opachich
,
G. E.
Kemp
,
J. D.
Colvin
,
M. A.
Barrios
,
K. W.
Widmann
,
K. B.
Fournier
,
M.
Hohenberger
,
F.
Albert
, and
S. P.
Regan
, “
Demonstration of a long pulse x-ray source at the National Ignition Facility
,”
Phys. Plasmas
24
,
042701
(
2017
).
13.
M. J.
May
,
J. D.
Colvin
,
G. E.
Kemp
,
M. A.
Barrios
,
K.
Widmann
,
R.
Benjamin
,
D.
Thorn
,
P.
Poole
, and
B.
Blue
, “
Development of high intensity x-ray sources at the National Ignition Facility
,”
Phys. Plasmas
25
,
056302
(
2018
).
14.
M. J.
May
,
G. E.
Kemp
,
J. D.
Colvin
,
D. A.
Liedahl
,
P. L.
Poole
,
D. B.
Thorn
,
K.
Widmann
,
R.
Benjamin
,
M. A.
Barrios
, and
B. E.
Blue
, “
Investigation of high x-ray conversion efficiency Kr filled gas sources at the National Ignition Facility
,”
Phys. Plasmas
26
,
063105
(
2019
).
15.
F.
Girard
,
J. P.
Jadaud
,
M.
Naudy
,
B.
Villette
,
D.
Babonneau
,
M.
Primout
,
M. C.
Miller
,
R. L.
Kauffman
,
L. J.
Suter
,
J.
Grun
, and
J.
Davis
, “
Multi-keV x-ray conversion efficiencies of laser-preexploded titanium foils
,”
Phys. Plasmas
12
,
092705
(
2005
).
16.
G.
Hu
,
S.
Liu
,
J.
Zhenga
,
C-s
Wu
,
J.
Li
,
S.
Wu
,
J.
Zhang
,
J.
Yang
,
G.
Yang
,
R.
Yi
,
H.
Du
,
Y.
Huang
,
X.
Hu
, and
Y.
Ding
, “
Efficient K-shell x-ray sources produced with titanium foils
,”
Phys. Plasmas
14
,
033103
(
2007
).
17.
D.
Babonneau
,
M.
Primout
,
F.
Girard
,
J. P.
Jadaud
,
M.
Naudy
,
B.
Villette
,
S.
Depierreux
,
C.
Blancard
,
G.
Faussurier
,
K. B.
Fournier
,
L.
Suter
,
R.
Kauffman
,
S.
Glenzer
,
M. C.
Miller
,
J.
Grun
, and
J.
Davis
, “
Efficient multi-keV x-ray sources from laser-exploded metallic thin foils
,”
Phys. Plasmas
15
,
092702
(
2008
).
18.
S.
Tu
,
G.
Hu
,
W.
Miao
,
B.
Zhao
,
J.
Zheng
,
Y.
Yuan
,
X.
Zhan
,
L.
Hou
,
S.
Jiang
, and
Y.
Ding
, “
Efficient multi-keV x-ray source generated by nanosecond laser pulse irradiated multi-layer thin foils target
,”
Phys. Plasmas
21
,
043107
(
2014
).
19.
R.
Wang
,
H.
An
,
Z.
Xie
, and
W.
Wang
, “
Multi-keV x-ray area source intensity at SGII laser facility
,”
Phys. Plasmas
25
,
053303
(
2018
).
20.
M.
Tanabe
,
H.
Nishimura
,
S.
Fujioka
,
K.
Nagai
,
N.
Yamamoto
,
Z.-Z.
Gu
,
C.
Pan
,
F.
Girard
,
M.
Primout
,
B.
Villette
,
D.
Brebion
,
K. B.
Fournier
,
A.
Fujishima
, and
K.
Mima
, “
Titanium dioxide nanofiber-cotton targets for efficient multi-keV x-ray generation
,”
Appl. Phys. Lett.
93
,
051505
(
2008
).
21.
M.
Primout
,
D.
Babonneau
,
L.
Jacquet
,
B.
Villette
,
F.
Girard
,
D.
Brebion
,
P.
Stemmler
,
K. B.
Fournier
,
R.
Marrs
,
M. J.
May
,
R. F.
Heeter
,
R. J.
Wallace
,
H.
Nishimura
,
S.
Fujioka
,
M.
Tanabe
, and
H.
Nagai
, “
A new hybrid target concept for multi-keV x-ray sources
,”
High Energy Density Phys.
9
,
750
760
(
2013
).
22.
M.
Primout
,
D.
Babonneau
,
L.
Jacquet
,
F.
Gilleron
,
O.
Peyrusse
,
K. B.
Fournier
,
R.
Marrs
,
M. J.
May
,
R. F.
Heeter
, and
R. J.
Wallace
, “
Characterization of a hybrid target multi-keV x-ray source by a multi-parameter statistical analysis of titanium K-shell emission
,”
High Energy Density Phys.
18
,
55
66
(
2016
).
23.
S.
Tu
,
Y.
Yuan
,
G.
Hu
,
W.
Miao
,
B.
Zhao
,
J.
Zheng
,
S-e
Jiang
, and
Y.
Ding
, “
Dependence of optimal initial density on laser parameters for multi-keV x-ray radiators generated by nanosecond laser-produced underdense plasma
,”
Phys. Plasmas
23
,
013102
(
2016
).
24.
J. D.
Colvin
,
K. B.
Fournier
,
M. J.
May
, and
H. A.
Scott
, “
A computational study of x-ray emission from laser-irradiated Ge-doped foams
,”
Phys. Plasmas
17
,
073111
(
2010
).
25.
F.
Pérez
,
J. R.
Patterson
,
M.
May
,
J. D.
Colvin
,
M. M.
Biener
,
A.
Wittstock
,
S. O.
Kucheyev
,
S.
Charnvanichborikarn
,
J. H.
Satcher
,
S. A.
Gammon
,
J. F.
Poco
,
S.
Fujioka
,
Z.
Zhang
,
K.
Ishihara
,
N.
Tanaka
,
T.
Ikenouchi
,
H.
Nishimura
, and
K. B.
Fournier
, “
Bright x-ray sources from laser irradiation of foams with high concentration of Ti
,”
Phys. Plasmas
21
,
023102
(
2014
).
26.
F.
Perez
,
J. D.
Colvin
,
M. J.
May
,
S.
Charnvanichborikarn
,
S. O.
Kucheyev
,
T. E.
Felter
, and
K. B.
Fournier
, “
High-power laser interaction with low-density C–Cu foams
,”
Phys. Plasmas
22
,
113112
(
2015
).
27.
K. B.
Fournier
,
C.
Constantin
,
J.
Poco
,
M. C.
Miller
,
C. A.
Back
,
L. J.
Suter
,
J.
Satcher
,
J.
Davis
, and
J.
Grun
, “
Efficient multi-keV x-ray sources from Ti-doped aerogel targets
,”
Phys. Rev. Lett.
92
,
165005
(
2004
).
28.
C. A.
Back
,
U.
Feldman
,
J. L.
Weaver
,
J. F.
Seely
,
C.
Constantin
,
G.
Holland
,
R. W.
Lee
,
H. K.
Chung
, and
H. A.
Scott
, “
Absolute, time-resolved emission of non-LTE L-shell spectra from Ti-doped aerogels
,”
J. Quant. Spectrosc. Radiat. Transfer
99
,
21
(
2006
).
29.
K. B.
Fournier
,
J. H.
Satcher
,
M. J.
May
,
J. F.
Poco
,
C. M.
Sorce
,
J. D.
Colvin
,
S. B.
Hansen
,
S. A.
MacLaren
,
S. J.
Moon
,
J. F.
Davis
,
F.
Girard
,
B.
Villette
,
M.
Primout
,
D.
Babonneau
,
C. A.
Coverdale
, and
D. E.
Beutler
, “
Absolute x-ray yields from laser-irradiated germanium-doped low-density aerogels
,”
Phys. Plasmas
16
,
052703
(
2009
).
30.
F.
Girard
,
M.
Primout
,
B.
Villette
,
D.
Brebion
,
H.
Nishimura
, and
K. B.
Fournier
, “
Experimental x-ray characterization of Gekko-XII laser propagation through very low-density aerogels (2–5 mg/cc) creating multi-keV photons from a titanium solid foil
,”
High Energy Density Phys.
7
,
285
287
(
2011
).
31.
F.
Perez
,
J. J.
Kay
,
J. R.
Patterson
,
J.
Kane
,
B.
Villette
,
F.
Girard
,
C.
Reverdin
,
M.
May
,
J.
Emig
,
C.
Sorce
,
J.
Colvin
,
S.
Gammon
,
J.
Jaquez
,
J. H.
Satcher
, and
K. B.
Fournier
, “
Efficient laser-induced 6–8 keV x-ray production from iron oxide aerogel and foil-lined cavity targets
,”
Phys. Plasmas
19
,
083101
(
2012
).
32.
F.
Girard
,
M.
Primout
,
B.
Villette
,
P.
Stemmler
,
L.
Jacquet
,
D.
Babonneau
, and
K. B.
Fournier
, “
Titanium and germanium lined Hohlraums and halfraums as multi-keV x-ray radiators
,”
Phys. Plasmas
16
,
052704
(
2009
).
33.
F.
Girard
,
M.
Primout
,
B.
Villette
,
P.
Stemmler
,
L.
Jacquet
,
D.
Babonneau
, and
K. B.
Fournier
, “
Erratum: ‘Titanium and germanium lined Hohlraums and halfraums as multi-keV x-ray radiators’ [Phys. Plasmas 16, 052704 (2009)]
,”
Phys. Plasmas
18
,
079901
(
2011
).
34.
L.
Jacquet
,
F.
Girard
,
M.
Primout
,
B.
Villette
, and
P.
Stemmler
, “
Multi-keV x-ray sources from metal-lined cylindrical Hohlraums
,”
Phys. Plasmas
19
,
083301
(
2012
).
35.
M. J.
May
,
K. B.
Fournier
,
J. D.
Colvin
,
M. A.
Barrios
,
E. L.
Dewald
,
M.
Hohenberger
,
J.
Moody
,
J. R.
Patterson
,
M.
Schneider
,
K.
Widmann
, and
S. P.
Regan
, “
Bright x-ray stainless steel K-shell source development at the National Ignition Facility
,”
Phys. Plasmas
22
,
063305
(
2015
).
36.
F.
Girard
, “
Review of laser produced multi-keV x-ray sources from metallic foils, cylinders with liner, and low density aerogels
,”
Phys. Plasmas
23
,
040501
(
2016
).
37.
X. T.
He
and
W. Y.
Zhang
, “
Inertial fusion research in China
,”
Eur. Phys. J. D
44
,
227
231
(
2007
).
38.
T.
Gong
,
Z.
Li
,
X.
Jiang
,
Y.
Ding
,
D.
Yang
,
Z.
Wang
,
F.
Wang
,
P.
Li
,
G.
Hu
,
B.
Zhao
,
S.
Liu
,
S.
Jiang
, and
J.
Zheng
, “
Development of Thomson scattering system on Shenguang-III prototype laser facility
,”
Rev. Sci. Instrum.
86
,
023501
(
2015
).
39.
J. J.
MacFarlane
,
I. E.
Golovkin
, and
P. R.
Woodruff
, “
A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling
,”
J. Quant. Spectrosc. Radiat. Transfer
99
,
381
(
2006
).
40.
D. H.
Froula
,
P.
Davis
,
L.
Divol
,
J. S.
Ross
,
N.
Meezan
,
D.
Price
,
S. H.
Glenzer
, and
C.
Rousseaux
, “
Measurement of the dispersion of thermal ion-acoustic fluctuations in high-temperature laser plasmas using multiple-wavelength Thomson scattering
,”
Phys. Rev. Lett.
95
,
195005
(
2005
).
41.
H.
Zhao
,
Z.
Li
,
D.
Yang
,
X.
Li
,
Y.
Chen
,
X.
Jiang
,
Y.
Liu
,
T.
Gong
,
L.
Guo
,
S.
Li
,
Q.
Li
,
F.
Wang
,
S.
Liu
,
J.
Yang
,
S.
Jiang
,
W.
Zheng
,
B.
Zhang
, and
Y.
Ding
, “
Progress in optical Thomson scattering diagnostics for ICF gas-filled Hohlraums
,”
Matter Radiat. Extremes
4
,
055201
(
2019
).
42.
J.
Zheng
,
Z. B.
Wang
,
C. X.
Yu
,
X. H.
Jiang
,
Z. R.
Cao
,
Y. K.
Ding
, and
K. A.
Tanaka
, “
Influence of target geometry on the ion temperature of laser-produced plasmas
,”
J. Phys.: Conf. Ser.
112
,
022040
(
2008
).
43.
S. H.
Glenzer
,
C. A.
Back
,
L. J.
Suter
,
M. A.
Blain
,
O. L.
Landen
,
J. D.
Lindl
,
B. J.
MacGowan
,
G. F.
Stone
,
R. E.
Turner
, and
B. H.
Wilde
, “
Thomson scattering from inertial-confinement-fusion Hohlraum plasmas
,”
Phys. Rev. Lett.
79
,
1277
1280
(
1997
).
44.
J.
Zhang
,
G.
Yang
,
X.
Hu
,
J.
Yang
,
Y.
Ding
,
Y.
Ding
,
B.
Zhang
,
Z.
Zheng
,
Y.
Xu
,
J.
Yan
, and
W.
Pei
, “
Two-tracer spectroscopy diagnostics of temperature profile in the conduction layer of a laser-ablated plastic foil
,”
Phys. Plasmas
17
,
113302
(
2010
).
45.
Z.
Li
,
X.
Jiang
,
S.
Liu
,
T.
Huang
,
J.
Zheng
,
J.
Yang
,
S.
Li
,
L.
Guo
,
X.
Zhao
,
H.
Du
,
T.
Song
,
R.
Yi
,
Y.
Liu
,
S.
Jiang
, and
Y.
Ding
, “
A novel flat-response x-ray detector in the photon energy range of 0.1–4 keV
,”
Rev. Sci. Instrum.
81
,
073504
(
2010
).
46.
Y.
Dong
,
J.
Yang
,
T.
Song
,
W.
Shang
,
L.
Zhang
,
C.
Huang
,
T.
Zhu
,
W.
Zhang
,
Z.
Li
,
X.
Zhan
,
H.
Du Du
,
F.
Wang
,
S.
Liu
,
S.
Jiang
, and
Y.
Ding
, “
Efficient soft x-ray sources from laser-irradiated gold foam targets with well-controlled impurities
,”
Nucl. Fusion
58
,
016038
(
2018
).
You do not currently have access to this content.