Transport from turbulence driven by the electron temperature-gradient (ETG) instability is likely a major source of electron heat losses through the pedestal. Due to extreme gradients and strong shaping, ETG instabilities in the pedestal are distinct from those in the core, having, for example, multiple branches (toroidal and slab) in different wavenumber ranges. Due to its importance for pedestal transport, and its rather exotic character, a rigorous multi-code benchmarking exercise is imperative. Here, we describe such an exercise, wherein we have carried out a detailed comparison of local linear pedestal ETG simulations using three gyrokinetic codes, CGYRO, GEM, and GENE and testing different geometric parameters (such as circular, Miller, and equilibrium EFIT geometry). The resulting linear frequencies, growth rates, and eigenfunctions show very good agreement between the codes in the three types of employed geometries. A nonlinear benchmark between CGYRO and GENE is also described, exhibiting good agreement (a maximum of 20% difference in the heat fluxes computed) at two locations in the pedestal. This lays the foundation for confidently modeling ETG turbulence in the pedestal.

1.
M.
Kotschenreuther
,
X.
Liu
,
D. R.
Hatch
,
S.
Mahajan
,
L.
Zheng
,
A.
Diallo
,
R.
Groebner
,
J. C.
Hillesheim
,
C. F.
Maggi
,
C.
Giroud
 et al, “
Gyrokinetic analysis and simulation of pedestals to identify the culprits for energy losses using ‘fingerprints’
,”
Nucl. Fusion
59
(
9
),
096001
(
2019
).
2.
W.
Guttenfelder
,
R. J.
Groebner
,
J. M.
Canik
,
B. A.
Grierson
,
E. A.
Belli
, and
J.
Candy
, “
Testing predictions of electron scale turbulent pedestal transport in two DIII-D ELMy H-modes
,”
Nucl. Fusion
61
,
056005
(
2021
).
3.
W.
Dorland
,
F.
Jenko
,
M.
Kotschenreuther
, and
B. N.
Rogers
, “
Electron temperature gradient turbulence
,”
Phys. Rev. Lett.
85
(
26
),
5579
(
2000
).
4.
F.
Jenko
,
W.
Dorland
,
M.
Kotschenreuther
, and
B. N.
Rogers
, “
Electron temperature gradient driven turbulence
,”
Phys. Plasmas
7
(
5
),
1904
1910
(
2000
).
5.
D.
Told
,
F.
Jenko
,
P.
Xanthopoulos
,
L. D.
Horton
,
E.
Wolfrum
, and
ASDEX Upgrade team,
Gyrokinetic microinstabilities in ASDEX upgrade edge plasmas
,”
Phys. Plasmas
15
(
10
),
102306
(
2008
).
6.
F.
Jenko
,
D.
Told
,
P.
Xanthopoulos
,
F.
Merz
, and
L. D.
Horton
, “
Gyrokinetic turbulence under near-separatrix or nonaxisymmetric conditions
,”
Phys. Plasmas
16
(
5
),
055901
(
2009
).
7.
D. R.
Hatch
,
D.
Told
,
F.
Jenko
,
H.
Doerk
,
M. G.
Dunne
,
E.
Wolfrum
,
E.
Viezzer
,
M. J.
Pueschel
 et al, “
Gyrokinetic study of ASDEX upgrade inter-ELM pedestal profile evolution
,”
Nucl. Fusion
55
(
6
),
063028
(
2015
).
8.
D. R.
Hatch
,
M.
Kotschenreuther
,
S.
Mahajan
,
P.
Valanju
,
F.
Jenko
,
D.
Told
,
T.
Görler
, and
S.
Saarelma
, “
Microtearing turbulence limiting the JET-ILW pedestal
,”
Nucl. Fusion
56
(
10
),
104003
(
2016
).
9.
D. R.
Hatch
,
M.
Kotschenreuther
,
S.
Mahajan
,
P.
Valanju
, and
X.
Liu
, “
A gyrokinetic perspective on the JET-ILW pedestal
,”
Nucl. Fusion
57
(
3
),
036020
(
2017
).
10.
D. R.
Hatch
,
M.
Kotschenreuther
,
S. M.
Mahajan
,
G.
Merlo
,
A. R.
Field
,
C.
Giroud
,
J. C.
Hillesheim
,
C. F.
Maggi
,
C.
Perez von Thun
,
C. M.
Roach
 et al, “
Direct gyrokinetic comparison of pedestal transport in jet with carbon and ITER-like walls
,”
Nucl. Fusion
59
(
8
),
086056
(
2019
).
11.
X.
Liu
, “
Gyrokinetic simulation of pedestal turbulence using GENE
,” Ph.D. thesis (
University of Texas
,
2018
).
12.
W.
Guttenfelder
and
J.
Candy
, “
Resolving electron scale turbulence in spherical tokamaks with flow shear
,”
Phys. Plasmas
18
(
2
),
022506
(
2011
).
13.
J. F.
Parisi
,
F. I.
Parra
,
C. M.
Roach
,
C.
Giroud
,
W.
Dorland
,
D. R.
Hatch
,
M.
Barnes
,
J. C.
Hillesheim
,
N.
Aiba
,
J.
Ball
 et al, “
Toroidal and slab ETG instability dominance in the linear spectrum of JET-ILW pedestals
,” arXiv:2004.13634 (
2020
).
14.
E.
Wang
,
X.
Xu
,
J.
Candy
,
R. J.
Groebner
,
P. B.
Snyder
,
Y.
Chen
,
S. E.
Parker
,
W.
Wan
,
G.
Lu
, and
J. Q.
Dong
, “
Linear gyrokinetic analysis of a DIII-D H-mode pedestal near the ideal ballooning threshold
,”
Nucl. Fusion
52
(
10
),
103015
(
2012
).
15.
J.
Candy
,
E. A.
Belli
, and
R. V.
Bravenec
, “
A high-accuracy eulerian gyrokinetic solver for collisional plasmas
,”
J. Comput. Phys.
324
,
73
93
(
2016
).
16.
Y.
Chen
,
S. E.
Parker
,
W.
Wan
, and
R.
Bravenec
, “
Benchmarking gyrokinetic simulations in a toroidal flux-tube
,”
Phys. Plasmas
20
(
9
),
092511
(
2013
).
17.
W. M.
Nevins
,
J.
Candy
,
S.
Cowley
,
T.
Dannert
,
A.
Dimits
,
W.
Dorland
,
C.
Estrada-Mila
,
G. W.
Hammett
,
F.
Jenko
,
M. J.
Pueschel
 et al, “
Characterizing electron temperature gradient turbulence via numerical simulation
,”
Phys. Plasmas
13
(
12
),
122306
(
2006
).
18.
R. E.
Waltz
,
J.
Candy
, and
M.
Fahey
, “
Coupled ion temperature gradient and trapped electron mode to electron temperature gradient mode gyrokinetic simulations
,”
Phys. Plasmas
14
(
5
),
056116
(
2007
).
19.
R. L.
Miller
,
M.-S.
Chu
,
J. M.
Greene
,
Y. R.
Lin-Liu
, and
R. E.
Waltz
, “
Noncircular, finite aspect ratio, local equilibrium model
,”
Phys. Plasmas
5
(
4
),
973
978
(
1998
).
20.
E. A.
Frieman
and
L.
Chen
, “
Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria
,”
Phys. Fluids
25
(
3
),
502
508
(
1982
).
21.
H.
Sugama
and
W.
Horton
, “
Nonlinear electromagnetic gyrokinetic equation for plasmas with large mean flows
,”
Phys. Plasmas
5
(
7
),
2560
2573
(
1998
).
22.
E. A.
Belli
and
J.
Candy
, “
Impact of centrifugal drifts on ion turbulent transport
,”
Phys. Plasmas
25
(
3
),
032301
(
2018
).
23.
H.
Sugama
,
T.-H.
Watanabe
, and
M.
Nunami
, “
Linearized model collision operators for multiple ion species plasmas and gyrokinetic entropy balance equations
,”
Phys. Plasmas
16
(
11
),
112503
(
2009
).
24.
Y.
Chen
and
S. E.
Parker
, “
Electromagnetic gyrokinetic δf particle-in-cell turbulence simulation with realistic equilibrium profiles and geometry
,”
J. Comput. Phys.
220
(
2
),
839
855
(
2007
).
25.
N. T.
Kottegoda
and
R.
Rosso
,
Applied Statistics for Civil and Environmental Engineers
(
Blackwell
,
Malden, MA
,
2008
).
26.
R. E.
Waltz
and
R. L.
Miller
, “
Ion temperature gradient turbulence simulations and plasma flux surface shape
,”
Phys. Plasmas
6
(
11
),
4265
4271
(
1999
).
27.
D. R.
Hatch
,
M. J.
Pueschel
,
F.
Jenko
,
W. M.
Nevins
,
P. W.
Terry
, and
H.
Doerk
, “
Magnetic stochasticity and transport due to nonlinearly excited subdominant microtearing modes
,”
Phys. Plasmas
20
(
1
),
012307
(
2013
).
28.
M. J.
Pueschel
,
D. R.
Hatch
,
D. R.
Ernst
,
W.
Guttenfelder
,
P. W.
Terry
,
J.
Citrin
, and
J. W.
Connor
, “
On microinstabilities and turbulence in steep-gradient regions of fusion devices
,”
Plasma Phys. Controlled Fusion
61
(
3
),
034002
(
2019
).
29.
H.-S.
Xie
and
Y.
Xiao
, “
Unconventional ballooning structures for toroidal drift waves
,”
Phys. Plasmas
22
(
9
),
090703
(
2015
).
30.
D. R.
Hatch
,
M. T.
Kotschenreuther
,
S. M.
Mahajan
,
M.
Halfmoon
,
E.
Hassan
,
G.
Merlo
,
C.
Michoski
,
J.
Canik
,
A.
Sontag
, and
I.
Joseph
, “
Final report for the FY19 FES theory performance target
,” [USDOE Office of Science (SC), USA,
2019
].
You do not currently have access to this content.