The simulation of large nonlinear dynamical systems, including systems generated by discretization of hyperbolic partial differential equations, can be computationally demanding. Such systems are important in both fluid and kinetic computational plasma physics. This motivates exploring whether a future error-corrected quantum computer could perform these simulations more efficiently than any classical computer. We describe a method for mapping any finite nonlinear dynamical system to an infinite linear dynamical system (embedding) and detail three specific cases of this method that correspond to previously studied mappings. Then we explore an approach for approximating the resulting infinite linear system with finite linear systems (truncation). Using a number of qubits only logarithmic in the number of variables of the nonlinear system, a quantum computer could simulate truncated systems to approximate output quantities if the nonlinearity is sufficiently weak. Other aspects of the computational efficiency of the three detailed embedding strategies are also discussed.

1.
S.
Murty
, “
Engineering computations at the National Magnetic Fusion Energy Computer Center
,”
Nucl. Technol.-Fusion
4
,
25
32
(
1983
).
2.
R.
Service
, “
Design for U.S. exascale computer takes shape
,”
Science
359
,
617
(
2018
).
3.
J.
Preskill
, “
Quantum computing in the NISQ era and beyond
,”
Quantum
2
,
79
(
2018
).
4.
I.
Joseph
, “
Koopman–von Neumann approach to quantum simulation of nonlinear classical dynamics
,”
Phys. Rev. Res.
2
,
043102
(
2020
).
5.
I. Y.
Dodin
and
E. A.
Startsev
, “
On applications of quantum computing to plasma simulations
,”
Plasma Res. Express
(submitted).
6.
M.
Lubasch
,
J.
Joo
,
P.
Moinier
,
M.
Kiffner
, and
D.
Jaksch
, “
Variational quantum algorithms for nonlinear problems
,”
Phys. Rev. A
101
,
010301
(
2020
).
7.
R.
Steijl
,
Quantum Algorithms for Nonlinear Equations in Fluid Mechanics
(
IntechOpen
,
2020
).
8.
J.-P.
Liu
,
H.
Øie Kolden
,
H. K.
Krovi
,
N. F.
Loureiro
,
K.
Trivisa
, and
A. M.
Childs
, “
Efficient quantum algorithm for dissipative nonlinear differential equations
,” arXiv:2011.03185 (
2020
).
9.
S.
Lloyd
,
G.
De Palma
,
C.
Gokler
,
B.
Kiani
,
Z.-W.
Liu
,
M.
Marvian
,
F.
Tennie
, and
T.
Palmer
, “
Quantum algorithm for nonlinear differential equations
,” arXiv:2011.06571 (
2020
).
10.
Y.
Shi
,
A. R.
Castelli
,
X.
Wu
,
I.
Joseph
,
V.
Geyko
,
F. R.
Graziani
,
S. B.
Libby
,
J. B.
Parker
,
Y. J.
Rosen
,
L. A.
Martinez
, and
J. L.
DuBois
, “
Simulating nonnative cubic interactions on noisy quantum machines
,”
Phys. Rev. Lett.
(submitted).
11.
R. P.
Feynman
, “
Simulating physics with computers
,”
Int. J. Theor. Phys.
21
,
467
488
(
1982
).
12.
A.
Engel
,
G.
Smith
, and
S. E.
Parker
, “
Quantum algorithm for the Vlasov equation
,”
Phys. Rev. A
100
,
062315
(
2019
).
13.
J. B.
Parker
and
I.
Joseph
, “
Quantum phase estimation for a class of generalized eigenvalue problems
,”
Phys. Rev. A
102
,
022422
(
2020
).
14.
A. W.
Harrow
,
A.
Hassidim
, and
S.
Lloyd
, “
Quantum algorithm for linear systems of equations
,”
Phys. Rev. Lett.
103
,
150502
(
2009
).
15.
A.
Childs
,
R.
Kothari
, and
R.
Somma
, “
Quantum algorithm for systems of linear equations with exponentially improved dependence on precision
,”
SIAM J. Comput.
46
,
1920
1950
(
2017
).
16.
A. N.
Soklakov
and
R.
Schack
, “
Efficient state preparation for a register of quantum bits
,”
Phys. Rev. A
73
,
012307
(
2006
).
17.
D. W.
Berry
,
A. M.
Childs
,
A.
Ostrander
, and
G.
Wang
, “
Quantum algorithm for linear differential equations with exponentially improved dependence on precision
,”
Commun. Math. Phys.
356
,
1057
1081
(
2017
).
18.
K.
Kowalski
,
Methods of Hilbert Spaces in the Theory of Nonlinear Dynamical Systems
(
World Scientific
,
Singapore
,
1994
), p.
1
.
19.
B. O.
Koopman
, “
Hamiltonian systems and transformation in Hilbert space
,”
Proc. Natl. Acad. Sci.
17
,
315
318
(
1931
).
20.
J.
von Neumann
, “
Zur operatorenmethode in der klassischen mechanik
,”
Ann. Math.
33
,
587
642
(
1932
).
21.
J.
von Neumann
, “
Zusatze zur arbeit ‘zur operatorenmethode…
,’”
Ann. Math.
33
,
789
791
(
1932
).
22.
T.
Carleman
, “
Application de la théorie des équations intégrales linéaires aux systèmes d'équations différentielles non linéaires
,”
Acta Math.
59
,
63
87
(
1932
).
23.
W.-H.
Steeb
, “
Embedding of nonlinear finite dimensional systems in linear infinite dimensional systems and Bose operators
,”
Hadronic J.
6
,
68
76
(
1983
).
24.
B.
Chirikov
,
F.
Izrailev
, and
D.
Shepelyansky
, “
Quantum chaos: Localization vs. ergodicity
,”
Physica D
33
,
77
88
(
1988
).
25.
T.
Alanson
, “
A ‘quantal’ Hilbert space formulation for nonlinear dynamical systems in terms of probability amplitudes
,”
Phys. Lett. A
163
,
41
45
(
1992
).
26.
K.
Kowalski
, “
Nonlinear dynamical systems and classical orthogonal polynomials
,”
J. Math. Phys.
38
,
2483
2505
(
1997
).
27.
K.
Kowalski
and
W.-H.
Steeb
,
Nonlinear Dynamical Systems and Carleman Linearization
(
World Scientific
,
Singapore
,
1991
).
28.
K.
Kowalski
,
Methods of Hilbert Spaces in the Theory of Nonlinear Dynamical Systems
(
World Scientific
,
Singapore
,
1994
).
29.
V. S.
Varadarajan
,
Geometry of Quantum Theory
(
Van Nostrand Reinhold
,
New York
,
1970
), Vol.
II
.
30.
G.
Brassard
,
P.
Høyer
,
M.
Mosca
, and
A.
Tapp
, “
Quantum amplitude amplification and estimation
,” in
Quantum Computation and Information
, Contemporary Mathematics Vol.
305
(
American Mathematical Society
,
Providence, RI
,
2002
), pp.
53
74
.
31.
L.
Grover
and
T.
Rudolph
, “
Creating superpositions that correspond to efficiently integrable probability distributions
,” arXiv:Quant-ph/0208112 (
2002
).
32.
G. H.
Low
and
I. L.
Chuang
, “
Optimal Hamiltonian simulation by quantum signal processing
,”
Phys. Rev. Lett.
118
,
010501
(
2017
).
33.
F. C.
Hoppensteadt
,
Analysis and Simulation of Chaotic Systems
, 2nd ed. (
Springer
,
New York
,
2000
), pp.
152
153
.
34.
G. H.
Low
and
I. L.
Chuang
, “
Hamiltonian simulation by qubitization
,”
Quantum
3
,
163
(
2019
).
35.
G. H.
Low
and
I. L.
Chuang
, “
Hamiltonian simulation by uniform spectral amplification
,” arXiv:1707.05391 (
2017
).
You do not currently have access to this content.