This paper discusses temporally continuous and discrete forms of the speed-limited particle-in-cell (SLPIC) method first treated by Werner et al. [Phys. Plasmas 25, 123512 (2018)]. The dispersion relation for a 1D1V electrostatic plasma whose fast particles are speed-limited is derived and analyzed. By examining the normal modes of this dispersion relation, we show that the imposed speed-limiting substantially reduces the frequency of fast electron plasma oscillations while preserving the correct physics of lower-frequency plasma dynamics (e.g., ion acoustic wave dispersion and damping). We then demonstrate how the time step constraints of conventional electrostatic particle-in-cell methods are relaxed by the speed-limiting approach, thus enabling larger time steps and faster simulations. These results indicate that the SLPIC method is a fast, accurate, and powerful technique for modeling plasmas wherein electron kinetic behavior is nontrivial (such that a fluid/Boltzmann representation for electrons is inadequate) but evolution is on ion timescales.

1.
G. R.
Werner
,
T. G.
Jenkins
,
A. M.
Chap
, and
J. R.
Cary
,
Phys. Plasmas
25
,
123512
(
2018
).
2.
Subsequent code development has enabled speedup factors of greater than 250 for this discharge
, relative to conventional PIC. Detailed discharge properties are provided in Ref. 1 
.
3.
A. B.
Langdon
and
C. K.
Birdsall
,
Phys. Fluids
13
,
2115
(
1970
).
4.
Collisional effects, which would replace the zero on the right-hand side of Eq.
(
1
)
with source or sink terms, could also be included in this equation; SLPIC is compatible with conventional PIC-MCC techniques for modeling collisional plasmas. We will not consider collisional effects in this work,
but future publications demonstrating collisional SLPIC discharges are anticipated.
5.
D. C.
Montgomery
,
Theory of the Unmagnetized Plasma
(
Gordon and Breach
,
1971
).
6.
D. G.
Swanson
,
Plasma Kinetic Theory
(
CRC Press
,
2008
).
7.
B.
Scheiner
and
P. J.
Adrian
,
Phys. Plasmas
26
,
034501
(
2019
).
8.
C. K.
Birdsall
and
A. B.
Langdon
,
Plasma Physics via Computer Simulation
(
CRC Press
,
2004
).
9.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
CRC Press
,
1988
).
10.
A. B.
Langdon
,
J. Comput. Phys.
6
,
247
(
1970
).
11.
H.
Okuda
and
C. K.
Birdsall
,
Phys. Fluids
13
,
2123
(
1970
).
12.
H.
Okuda
,
Phys. Fluids
15
,
1268
(
1972
).
13.
A. B.
Langdon
,
Phys. Fluids
22
,
163
(
1979
).
14.
Parallels can be drawn with relativistic dynamics, in which elements of phase space can move from one physical position to another with speed no faster than the speed of light; see  Appendix C for further discussion.
15.
J. C.
Adam
,
A. G.
Serveniere
, and
A. B.
Langdon
,
J. Comput. Phys.
47
(
2
),
229
(
1982
).
16.
B. D.
Fried
and
S. D.
Conte
,
The Plasma Dispersion Function
(
Academic Press
,
1961
).
17.
R. N.
Franklin
, in
Proceedings of the Tenth International Conference on Phenomena in Ionized Gases
(
Donald Parsons and Company, Ltd
.,
1971
), p.
269
.
18.
S. D.
Baalrud
,
Phys. Plasmas
20
,
012118
(
2013
).
19.
R. J.
Goldston
and
P. H.
Rutherford
,
Introduction to Plasma Physics
(
IOP
,
1995
).
20.
F. F.
Chen
,
Introduction to Plasma Physics and Controlled Fusion
, 3rd ed. (
Springer
,
2016
).
21.
C.
Nieter
and
J. R.
Cary
,
J. Comput. Phys.
196
,
448
(
2004
).
22.
T. Zh.
Esirkepov
,
Comput. Phys. Commun.
135
(
2
),
144
(
2001
).
23.
G. R.
Werner
,
S.
Robertson
,
T. G.
Jenkins
,
A. M.
Chap
, and
J. R.
Cary
, “
Accelerated steady-state electrostatic particle-in-cell simulation of Langmuir probes
,”
Phys. Plasmas
(unpublished).
24.
J.
Theis
,
G. R.
Werner
,
T. G.
Jenkins
, and
J. R.
Cary
, “
Computing the Paschen curve for argon with speed-limited particle-in-cell simulation
,”
Phys. Plasmas
28
,
063513
(
2021
).
You do not currently have access to this content.