A local study of linear electrostatic modes, applicable to the dynamics perpendicular to the magnetic field in a plasma with crossed electric and magnetic fields, is presented. The analysis is based on a two-fluid model that takes into account the finite-electron-gyroradius effects through a rigorous gyroviscosity tensor and includes a dissipative friction force in the electron momentum equation. A comprehensive dispersion relation, valid for arbitrary electron temperature, is derived, which describes properly all the relevant waves for wavelengths longer than the electron Larmor radius. For a homogeneous and dissipationless plasma, such a fluid dispersion relation agrees with the long-wavelength limit of the kinetic electron–cyclotron-drift instability dispersion relation that extends the results to arbitrary short wavelengths. The general fluid dispersion relation covers different parametric regimes that depend on the relative ion-to-electron drift velocity and on the presence of equilibrium inhomogeneities and/or dissipation. Depending on such conditions, its roots yield as follows: two-stream instabilities, driven solely by the relative drift between species; drift-gradient instabilities, driven by the combination of the relative drift and equilibrium gradients; and drift-dissipative instabilities, driven by the combination of the relative drift and friction. Instability thresholds are determined and some distinctive unstable modes are described analytically.

1.
D. W.
Forslund
,
R. L.
Morse
, and
C. W.
Nielson
, “
Electron cyclotron drift instability
,”
Phys. Rev. Lett.
25
,
1266
1270
(
1970
).
2.
H. V.
Wong
, “
Electrostatic electron–ion streaming instability
,”
Phys. Fluids
13
,
757
760
(
1970
).
3.
O.
Buneman
, “
Instability of electrons drifting through ions across a magnetic field
,”
J. Nucl. Energy, Part C
4
(
2
),
111
117
(
1962
).
4.
N. A.
Krall
and
P. C.
Liewer
, “
Low-frequency instabilities in magnetic pulses
,”
Phys. Rev. A
4
,
2094
2103
(
1971
).
5.
A.
Ducrocq
,
J. C.
Adam
,
A.
Héron
, and
G.
Laval
, “
High-frequency electron drift instability in the cross-field configuration of Hall thrusters
,”
Phys. Plasmas
13
,
102111
(
2006
).
6.
A. I.
Morozov
,
Y. V.
Esipchuk
,
A. M.
Kapulkin
,
V. A.
Nevrovskii
, and
V. A.
Smirnov
, “
Effect of the magnetic field on a closed-electron-drift accelerator
,”
Sov. Phys.-Tech. Phys.
17
(
3
),
482
487
(
1972
).
7.
A.
Kapulkin
and
M. M.
Guelman
, “
Low-frequency instability in near-anode region of Hall thruster
,”
IEEE Trans. Plasma Sci.
36
(
5
),
2082
2087
(
2008
).
8.
Y. V.
Esipchuk
and
G. N.
Tilinin
, “
Drift instability in a Hall-current plasma accelerator
,”
Sov. Phys.-Tech. Phys.
21
(
4
),
417
423
(
1976
).
9.
W.
Frias
,
A. I.
Smolyakov
,
I. D.
Kaganovich
, and
Y.
Raitses
, “
Long wavelength gradient drift instability in Hall plasma devices. I. Fluid theory
,”
Phys. Plasmas
19
,
072112
(
2012
).
10.
A. I.
Smolyakov
,
O.
Chapurin
,
W.
Frias
,
O.
Koshkarov
,
I.
Romadanov
,
T.
Tang
,
M.
Umansky
,
Y.
Raitses
,
I. D.
Kaganovich
, and
V. P.
Lakhin
, “
Fluid theory and simulations of instabilities, turbulent transport and coherent structures in partially-magnetized plasmas of E × B discharges
,”
Plasma Phys. Controlled Fusion
59
,
014041
(
2017
).
11.
V. P.
Lakhin
,
V. I.
Ilgisonis
,
A. I.
Smolyakov
,
E. A.
Sorokina
, and
N. A.
Marusov
, “
Effects of finite electron temperature on gradient drift instabilities in partially magnetized plasmas
,”
Phys. Plasmas
25
,
012106
(
2018
).
12.
V.
Nikitin
,
D.
Tomilin
,
A.
Lovtsov
, and
A.
Tarasov
, “
Gradient-drift and resistive mechanisms of the anomalous electron transport in Hall effect thrusters
,”
Europhys. Lett.
117
(
4
),
45001
(
2017
).
13.
A. A.
Litvak
and
N. J.
Fisch
, “
Resistive instabilities in Hall current plasma discharge
,”
Phys. Plasmas
8
(
2
),
648
651
(
2001
).
14.
M. K.
Scharfe
,
M. A.
Cappelli
, and
E.
Fernandez
, “
Predicting electron transport using simulated axial waves in a radial-axial hybrid Hall thruster model
,” in
31st International Electric Propulsion Conference
, Paper No. IEPC-2009-129, Ann Harbor, Michigan, USA (
Electric Rocket Propulsion Society
,
OH
,
2009
).
15.
S.
Singh
and
H. K.
Malik
, “
Growth of low-frequency electrostatic and electromagnetic instabilities in a Hall thruster
,”
IEEE Trans. Plasma Sci.
39
(
10
),
1910
1918
(
2011
).
16.
O.
Koshkarov
,
A. I.
Smolyakov
,
I. V.
Romadanov
,
O.
Chapurin
,
M. V.
Umansky
,
Y.
Raitses
, and
I. D.
Kaganovich
, “
Current flow instability and nonlinear structures in dissipative two-fluid plasmas
,”
Phys. Plasmas
25
(
1
),
011604
(
2018
).
17.
S. P.
Gary
and
J. J.
Sanderson
, “
Longitudinal waves in a perpendicular collisionless plasma shock: I. Cold ions
,”
J. Plasma Phys.
4
(
4
),
739
751
(
1970
).
18.
A.
Simon
, “
Instability of a partially ionized plasma in crossed electric and magnetic fields
,”
Phys. Fluids
6
(
3
),
382
388
(
1963
).
19.
F. C.
Hoh
, “
Instability of Penning-type discharges
,”
Phys. Fluids
6
(
8
),
1184
1191
(
1963
).
20.
A. A.
Litvak
and
N. J.
Fisch
, “
Rayleigh instability in Hall thrusters
,”
Phys. Plasmas
11
,
1379
(
2004
).
21.
H. K.
Malik
and
S.
Singh
, “
Conditions and growth rate of Rayleigh instability in a Hall thruster under the effect of ion temperature
,”
Phys. Rev. E
83
,
036406
(
2011
).
22.
G.
Ganguli
,
C.
Crabtree
,
A.
Fletcher
, and
B.
Amatucci
, “
Behavior of compressed plasmas in magnetic fields
,”
Rev. Mod. Plasma Phys.
4
,
12
(
2020
).
23.
A.
Macmahon
, “
Finite gyro-radius corrections to the hydromagnetic equations for a Vlasov plasma
,”
Phys. Fluids
8
,
1840
(
1965
).
24.
J. J.
Ramos
, “
Fluid formalism for collisionless magnetized plasmas
,”
Phys. Plasmas
12
(
5
),
052102
(
2005
).
25.
J. J.
Ramos
, “
General expression of the gyroviscous force
,”
Phys. Plasmas
12
(
11
),
112301
(
2005
).
You do not currently have access to this content.