The introduction of 3D printing has enabled fabrication of photonic crystal devices with complex crystal structures that would be challenging to construct using other fabrication methods. In this paper, we construct and characterize a photonic crystal consisting of two 4 × 8 × 8 cubic lattices composed of spherical silicon nitride elements straddling a layer of 8 plasma discharge tubes, creating a 3D hybrid plasma photonic crystal device. Integrating under-dense gaseous plasma elements provides a unique coupling dynamic between the dielectric spheres and the cylindrical plasma discharges, creating a monolithic hybrid photonic crystal with solid state and reconfigurable elements. The device has resonant modes that have attenuation peaks that are either switchable, tunable in amplitude, or tunable in frequency with variations in plasma density. The response of these bands seen with varying plasma density is confirmed through simulations when effects due to the heating of the photonic crystal from the gaseous plasma elements are accounted for in the experiments. We discuss how this reconfigurable device may be used and expanded upon for applications in photonic artificial neural networks and optical computing systems.

1.
A. D.
McAulay
,
Optical Computer Architectures: The Application of Optical Concepts to Next Generation Computers
(
John Wiley & Sons, Inc.
,
USA
,
1991
).
2.
K.
Jain
and
G. W.
Pratt
, “
Optical transistor
,”
Appl. Phys. Lett.
28
(
12
),
719
721
(
1976
).
3.
B.
Yegnanarayana
,
Artificial Neural Networks
(
PHI Learning Pvt. Ltd
.,
2009
).
4.
Q.
Zhang
,
H.
Yu
,
M.
Barbiero
,
B.
Wang
, and
M.
Gu
, “
Artificial neural networks enabled by nanophotonics
,”
Light: Sci. Appl.
8
(
1
),
42
(
2019
).
5.
E.
Khoram
,
A.
Chen
,
D.
Liu
,
L.
Ying
,
Q.
Wang
,
M.
Yuan
, and
Z.
Yu
, “
Nanophotonic media for artificial neural inference
,”
Photonics Res.
7
(
8
),
823
827
(
2019
).
6.
I. A.
Williamson
,
T. W.
Hughes
,
M.
Minkov
,
B.
Bartlett
,
S.
Pai
, and
S.
Fan
, “
Reprogrammable electro-optic nonlinear activation functions for optical neural networks
,”
IEEE J. Sel. Top. Quantum Electron.
26
(
1
),
1
(
2020
).
7.
T. W.
Hughes
,
I. A.
Williamson
,
M.
Minkov
, and
S.
Fan
, “
Wave physics as an analog recurrent neural network
,”
Sci. Adv.
5
(
12
),
eaay6946
(
2019
).
8.
Y.
Takeoka
,
M.
Honda
, and
T.
Seki
, “
Dual tuning of the photonic band-gap structure in soft photonic crystals
,”
Adv. Mater.
21
(
18
),
1801
1804
(
2009
).
9.
S.
Zhang
,
Y.
Xiong
,
G.
Bartal
,
X.
Yin
, and
X.
Zhang
, “
Magnetized plasma for reconfigurable subdiffraction imaging
,”
Phys. Rev. Lett.
106
(
24
),
243901
(
2011
).
10.
S.
Mingaleev
and
Y.
Kivshar
, “
Nonlinear photonic crystals toward all-optical technologies
,”
Opt. Photonics News
13
(
7
),
48
(
2002
).
11.
X. C.
Sun
,
C.
He
,
X. P.
Liu
,
Y.
Zou
,
M. H.
Lu
,
X.
Hu
, and
Y. F.
Chen
, “
Photonic topological states in a two-dimensional gyrotropic photonic crystal
,”
Crystals
9
(
3
),
137
(
2019
).
12.
B.
Wang
,
J.
Rodríguez
, and
M. A.
Cappelli
, “
3d woodpile structure tunable plasma photonic crystal
,”
Plasma Sources Sci. Technol.
28
(
2
),
02LT01
(
2019
).
13.
J. P.
Lewicki
,
J. N.
Rodriguez
,
C.
Zhu
,
M. A.
Worsley
,
A. S.
Wu
,
Y.
Kanarska
,
J. D.
Horn
,
E. B.
Duoss
,
J. M.
Ortega
,
W.
Elmer
,
R.
Hensleigh
,
R. A.
Fellini
, and
M. J.
King
, “
3D-printing of meso-structurally ordered carbon fiber/polymer composites with unprecedented orthotropic physical properties
,”
Sci. Rep.
7
,
43401
(
2017
).
14.
M.
Mirzaee
,
S.
Noghanian
,
L.
Wiest
, and
I.
Chang
, “
Developing flexible 3D printed antenna using conductive ABS materials
,” in Proceedings of
IEEE International Symposium on Antennas and Propagation Society, AP-S (Digest) (
2015
), pp.
1308
1309
.
15.
D.
Chanda
,
K.
Shigeta
,
S.
Gupta
,
T.
Cain
,
A.
Carlson
,
A.
Mihi
,
A. J.
Baca
,
G. R.
Bogart
,
P.
Braun
, and
J. A.
Rogers
, “
Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing
,”
Nat. Nanotechnol.
6
(
7
),
402
407
(
2011
).
16.
B.
Wang
,
R.
Lee
,
R.
Colon
, and
M. A.
Cappelli
, “
A microstrip photonic crystal bandgap device with a switchable negative epsilon plasma element
,”
Microwave Opt. Technol. Lett.
59
(
12
),
3097
3101
(
2017
).
17.
O.
Sakai
,
T.
Naito
, and
K.
Tachibana
, “
Microplasma array serving as photonic crystals and plasmon chains
,”
Plasma Fusion Res.
4
,
052
(
2009
).
18.
H.
Hitoshi
and
A.
Mase
, “
Dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals
,”
J. Plasma Fusion Res.
80
(
2
),
89
90
(
2004
).
19.
J.
Lo
,
J.
Sokoloff
,
T. H.
Callegari
, and
J. P.
Boeuf
, “
Reconfigurable electromagnetic band gap device using plasma as a localized tunable defect
,”
Appl. Phys. Lett.
96
(
25
),
251501
(
2010
).
20.
M. A.
Miri
and
A.
Alù
, “
Exceptional points in optics and photonics
,”
Science
363
(
6422
),
eaar7709
(
2019
).
21.
J.
Anderson
,
E.
Kayraklioglu
,
S.
Sun
,
J.
Crandall
,
Y.
Alkabani
,
V.
Narayana
,
V.
Sorger
, and
T.
El-Ghazawi
, “
ROC: A reconfigurable optical computer for simulating physical processes
,”
ACM Trans. Parallel Comput.
7
(
1
),
8
(
2020
).
22.
V.
Stefan
,
B. I.
Cohen
, and
C.
Joshi
, “
Nonlinear mixing of electromagnetic waves in plasmas
,”
Science
243
(
4890
),
494
500
(
1989
).
23.
R.
Freer
and
I. O.
Owate
, “
The dielectric properties of nitrides
,” in
The Physics and Chemistry of Carbides, Nitrides and Borides
(
Springer, The Netherlands
,
Dordrecht
,
1990
), pp.
639
651
.
24.
G. J.
Hagelaar
and
L. C.
Pitchford
, “
Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models
,”
Plasma Sources Sci. Technol.
14
(
4
),
722
733
(
2005
).
25.
See www.lxcat.net for SIGLO database.
26.
A.
Hilscher
, “
Determination of the cathode fall voltage in fluorescent lamps by measurement of the operating voltage
,”
J. Phys. D: Appl. Phys.
35
(
14
),
1707
1715
(
2002
).
27.
M. L.
Huber
,
A.
Laesecke
, and
D. G.
Friend
, “
The vapor pressure of mercury
,”
Tech. Report No. 6643
,
2006
.
28.
U. E. P. Agency,
Ultraviolet disinfection guidance manual
,” EPA, Washington, D.C., Tech. Report No. EPA 815-D-03-007,
2003
.
29.
B.
Wang
and
M. A.
Cappelli
, “
A tunable microwave plasma photonic crystal filter
,”
Appl. Phys. Lett.
107
(
17
),
171107
(
2015
).
30.
B.
Wang
and
M. A.
Cappelli
, “
Waveguiding and bending modes in a plasma photonic crystal bandgap device
,”
AIP Adv.
6
(
6
),
065015
(
2016
).
31.
B.
Wang
and
M. A.
Cappelli
, “
A plasma photonic crystal bandgap device
,”
Appl. Phys. Lett.
108
(
16
),
161101
(
2016
).
32.
F.
Righetti
,
B.
Wang
, and
M. A.
Cappelli
, “
Enhanced attenuation due to lattice resonances in a two-dimensional plasma photonic crystal
,”
Phys. Plasmas
25
(
12
),
124502
(
2018
).
33.
D.
Saha
,
P. K.
Shaw
,
S.
Ghosh
,
M. S.
Janaki
, and
A. N.
Sekar Iyengar
, “
Evidence of nonlinearity in presence of external forcing and magnetic field in a glow discharge plasma
,”
Chaos, Solitons Fractals
98
,
46
55
(
2017
).
34.
B.
Sarma
,
S. S.
Chauhan
,
A. M.
Wharton
, and
A. N.
Iyengar
, “
Comparative study on nonlinear dynamics of magnetized and un-magnetized dc glow discharge plasma
,”
Phys. Scr.
88
(
6
),
065005
(
2013
).
35.
Y.
Wang
,
C.
Yuan
,
Y.
Liang
,
J.
Yao
, and
Z.
Zhou
, “
Ponderomotive force induced nonlinear interaction between powerful terahertz waves and plasmas
,”
Optik
175
,
250
255
(
2018
).
36.
H.
Sobhani
,
H. R.
Sabouhi
,
S.
Feili
, and
E.
Dadar
, “
Mode filtering based on ponderomotive force nonlinearity in a plasma filled rectangular waveguide
,”
Plasma Sci. Technol.
19
(
10
),
105504
(
2017
).
37.
J. A.
Rodriguez
,
A. I.
Abdalla
,
B.
Wang
,
B.
Lou
,
S.
Fan
, and
M. A.
Cappelli
, “
Inverse design of plasma metamaterial devices for optical computing
,” arXiv:2102.05148 (
2021
).
38.
T. W.
Hughes
,
I. A.
Williamson
,
M.
Minkov
, and
S.
Fan
, “
Forward-mode differentiation of Maxwell's equations
,”
ACS Photonics
6
(
11
),
3010
3016
(
2019
).
You do not currently have access to this content.