A fluid description for collisionless magnetized plasmas that takes into account the effect of cyclotron resonance has been developed. Following the same approach as the Landau fluid closure, the heat flux components associated with transverse electromagnetic fluctuations are approximated by a linear combination of lower-order moments in wavenumber space. The closure successfully reproduces the linear cyclotron resonance for electromagnetic waves propagating parallel to the ambient magnetic field. In the presence of finite temperature anisotropy, the model gives approximately correct prediction for an instability destabilized via the cyclotron resonance. A nonlinear simulation demonstrates the wave growth consistent with the linear theory followed by the reduction of initial anisotropy, and finally, the saturation of the instability. The isotropization may be understood in terms of quasilinear theory, which is developed within the framework of the fluid model but very similar to its fully kinetic counterpart. The result indicates that both linear and nonlinear collisionless plasma responses are approximately incorporated in the fluid model.

1.
G. W.
Hammett
and
F. W.
Perkins
, “
Fluid moment models for Landau damping with application to the ion-temperature-gradient instability
,”
Phys. Rev. Lett.
64
,
3019
3022
(
1990
).
2.
G. W.
Hammett
,
W.
Dorland
, and
F. W.
Perkins
, “
Fluid models of phase mixing, Landau damping, and nonlinear gyrokinetic dynamics
,”
Phys. Fluids B
4
,
2052
2061
(
1992
).
3.
P. B.
Snyder
,
G. W.
Hammett
, and
W.
Dorland
, “
Landau fluid models of collisionless magnetohydrodynamics
,”
Phys. Plasmas
4
,
3974
3985
(
1997
).
4.
G. F.
Chew
,
M. L.
Goldberger
, and
F. E.
Low
, “
The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions
,”
Proc. R. Soc. London, Ser. A
236
,
112
118
(
1956
).
5.
P.
Sharma
,
G. W.
Hammett
, and
E.
Quataert
, “
Transition from collisionless to collisional magnetorotational instability
,”
Astrophys. J.
596
,
1121
(
2003
).
6.
P.
Sharma
,
G. W.
Hammett
,
E.
Quataert
, and
J. M.
Stone
, “
Shearing box simulations of the mri in a collisionless plasma
,”
Astrophys. J.
637
,
952
967
(
2006
).
7.
P.
Goswami
,
T.
Passot
, and
P. L.
Sulem
, “
A Landau fluid model for warm collisionless plasmas
,”
Phys. Plasmas
12
,
102109
(
2005
).
8.
T.
Passot
and
P. L.
Sulem
, “
Collisionless magnetohydrodynamics with gyrokinetic effects
,”
Phys. Plasmas
14
,
082502
(
2007
).
9.
T.
Passot
,
P. L.
Sulem
, and
P.
Hunana
, “
Extending magnetohydrodynamics to the slow dynamics of collisionless plasmas
,”
Phys. Plasmas
19
,
082113
(
2012
).
10.
P. L.
Sulem
and
T.
Passot
, “
Landau fluid closures with nonlinear large-scale finite larmor radius corrections for collisionless plasmas
,”
J. Plasma Phys.
81
,
325810103
(
2015
).
11.
M.
Hesse
and
D.
Winske
, “
Hybrid simulations of collisionless ion tearing
,”
Geophys. Res. Lett.
20
,
1207
1210
, (
1993
).
12.
M.
Hesse
and
D.
Winske
, “
Hybrid simulations of collisionless reconnection in current sheets
,”
J. Geophys. Res.
99
,
11177
, (
1994
).
13.
T. H.
Stix
,
Waves in Plasmas
(
American Institute of Physics
,
1992
).
14.
R. C.
Davidson
and
J. M.
Ogden
, “
Electromagnetic ion cyclotron instability driven by ion energy anisotropy in high–beta plasmas
,”
Phys. Fluids
18
,
1045
1050
(
1975
).
15.
M. L.
Goldstein
, “
An instability of finite amplitude circularly polarized Afvén waves
,”
Astrophys. J.
219
,
700
704
(
1978
).
16.
T.
Terasawa
,
M.
Hoshino
,
J.-I.
Sakai
, and
T.
Hada
, “
Decay instability of finite-amplitude circularly polarized Alfvén waves - A numerical simulation of stimulated Brillouin scattering
,”
J. Geophys. Res.
91
,
4171
4187
, (
1986
).
17.
Y.
Nariyuki
and
T.
Hada
, “
Kinetically modified parametric instabilities of circularly polarized Alfvén waves: Ion kinetic effects
,”
Phys. Plasmas
13
,
124501
(
2006
).
18.
P. H.
Yoon
, “
Kinetic instabilities in the solar wind driven by temperature anisotropies
,”
Rev. Mod. Plasma Phys.
1
,
4
(
2017
).
19.
K.
Hirabayashi
,
M.
Hoshino
, and
T.
Amano
, “
A new framework for magnetohydrodynamic simulations with anisotropic pressure
,”
J. Comput. Phys.
327
,
851
872
(
2016
).
20.
K.
Hirabayashi
and
M.
Hoshino
, “
Stratified simulations of collisionless accretion disks
,”
Astrophys. J.
842
,
36
(
2017
).
21.
L.
Wang
,
A. H.
Hakim
,
A.
Bhattacharjee
, and
K.
Germaschewski
, “
Comparison of multi-fluid moment models with particle-in-cell simulations of collisionless magnetic reconnection
,”
Phys. Plasmas
22
,
012108
(
2015
).
22.
J.
Ng
,
A.
Hakim
,
A.
Bhattacharjee
,
A.
Stanier
, and
W.
Daughton
, “
Simulations of anti-parallel reconnection using a nonlocal heat flux closure
,”
Phys. Plasmas
24
,
082112
(
2017
).
23.
J.
Ng
,
A.
Hakim
,
L.
Wang
, and
A.
Bhattacharjee
, “
An improved ten-moment closure for reconnection and instabilities
,”
Phys. Plasmas
27
,
082106
(
2020
).
24.
D. D.
Sarto
,
F.
Pegoraro
, and
A.
Tenerani
, “
‘Magneto-elastic’ waves in an anisotropic magnetised plasma
,”
Plasma Phys. Controlled Fusion
59
,
045002
(
2017
).
25.
P.
Hunana
,
A.
Tenerani
,
G. P.
Zank
,
E.
Khomenko
,
M. L.
Goldstein
,
G. M.
Webb
,
P. S.
Cally
,
M.
Collados
,
M.
Velli
,
L.
Adhikari
 et al., “
An introductory guide to fluid models with anisotropic temperatures. Part 1. Cgl description and collisionless fluid hierarchy
,”
J. Plasma Phys.
85
,
205850602
(
2019
).
You do not currently have access to this content.